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Abstract

We investigate electroweak vector and axial-vector resonances in composite Higgs models, concentrating
on the phenomenology within the minmal coset SU(5)/SO(5). A comprehensive theoretical background
of composite Higgs models is provided and we construct the effective Lagrangian for the Spin-0
and Spin-1 resonances using the Callan-Coleman-Zumino-Wess formalism and the hidden symmetry
approach. We identify a subset of vector resonances which can be singly produced in the s-channel,
suitable for deriving constraints on the vector mass parameter MV . Benchmark scenarios for the
branching ratios are defined which are used to get very robust exclusion bounds by combining
multiple experimental searches from current LHC data. Additionally, we discuss the pair production
of a double charged axial vector, from which independent bounds on the axial mass parameter MA

are obtained.
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Zusammenfassung

Vektor- und Axialvektor-Resonanzen in “Composite-Higgs-Modellen” werden untersucht mit speziellem
Fokus auf Phänomenologie innerhalb der Quotientengruppe SU(5)/SO(5). Wir präsentieren einen
umfassenden theoretischen Hintergrund der Composite-Higgs-Modelle und konstruieren die effektive
Lagrangedichte für Spin-0- und Spin-1-Resonanzen unter Verwendung des Callan-Coleman-Zumino-
Wess-Formalismus und “Hidden Symmetry”. Im Folgenden werden Vektorresonanzen identifiziert,
welche im s-Kanal einzeln produziert werden können und sich dazu eignen untere Grenzen für den
Vektormassenparameter MV herzuleiten. Benchmarkszenarien für die Zerfallskanäle der Vektoren
werden definiert, um sehr robuste Ausschlussgrenzen zu erhalten. Dabei kombinieren wir mehrere
experimentelle Limits aus aktuellen LHC-Daten. Zusätzlich diskutieren wir die Paar-Produktion
eines doppelt geladenen Axialvektors, aus der unabhängige Grenzen für den Axialmassenparameter
MA abgeleitet werden.
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1 Motivation

In 2012, the Large Hadron Collider (LHC) discovered the Higgs boson [1,2], the last missing particle
of the Standard Model (SM). Its confirmation poses significant questions about the dynamical origin
of electroweak (EW) symmetry breaking [3–5]. How is the Higgs mass of 125GeV stabilized against
radiative corrections? Why is there a hierarchy among the fermion masses?
To discuss possible solutions, we first need to take one step back. The SM can not be the ultimate
description of nature as it lacks several features, such as neutrino masses, dark matter and a quantum
description of gravity. Therefore, the SM must be treated as an effective field theory valid only up to
some energy scale ΛSM. Assuming we know the high energy Lagrangian, the effective SM Lagrangian
at the scale ΛSM results from integrating out heavy dynamics.
At least above the Planck mass at E ≈ 1019GeV, new physics must emerge to avoid infinities
in a quantum theory of gravity. But more importantly, new physics do not need to arise only at
the Planck scale. Instead, there might be an explanation how to dynamically generate the Higgs
potential, which leads to EW symmetry breaking, right around the corner.
If we assume to know the full model of EW symmetry breaking the Higgs mass can be calculated
as [6]

m2
H =

∫ ΛSM

0
dE

dm2
H

dE
+

∫ ∞

ΛSM

dE
dm2

H

dE
= δSMm

2
H + δBSMm

2
H , (1.1)

where E is the energy of virtual particles in loop diagrams contributing to the Higgs mass. The
integral is split around the SM cutoff, yielding two completely independent contributions. We can
estimate the first part from SM diagrams integrating up to ΛSM, but know nothing about the Beyond
the Standard Model (BSM) contributions. The Naturalness problem [7, 8] arises in the following
form: We know that the SM contribution are ∝ Λ2

SM and get very large for a high cutoff. The BSM
contributions must cancel these large contributions with high precision to achieve the measured light
Higgs mass. This fine-tuning ∆ can be parameterized as [6]

∆ ≥
δSMm

2
H

m2
H

=
3y2t
8π2

(
ΛSM

mH

)2

≈
(

ΛSM

450GeV

)2

, (1.2)

considering only the top loop contribution of the SM. In order to be able to predict the Higgs mass
from an underlying UV model, the cutoff scale can not be much above the TeV scale. The Higgs mass
has a special role, because it is the only term in the SM where quadratic divergences can appear.
Composite Higgs models offer one solution to stabilize the Higgs mass against higher scales. If the
Higgs is a composite particle with size lH = 1/m∗ ∼ 1/TeV, the integrand in eq. (1.1) has a natural
cutoff.
Loosely speaking, this idea originates from Quantum Chromo Dynamics (QCD), where all known
scalars are actually composite states made of two quarks bound by the strong force. Similarly, the
Higgs particle might also emerge as a composite state bound by a new strong force with a higher
confinement scale m∗.
The earliest models of this type are known as technicolor [8, 9]. These models consist of two sectors:

7



1 Motivation

an elementary sector, which includes matter fermions and gauge bosons, and an additional composite
sector, which contains hyperquark fermions. The composite sector shall be invariant under the
symmetry group G in the UV. The condensation of underlying hyperquarks breaks the EW symmetry
and gives raise to technipions with a decay constant fT , giving mass to the gauge bosons mW = gfT /2.
In those models, the decay constant is at the EW scale fT ≈ v. It turns out that the model predicts
a scalar resonance significantly heavier than the Higgs and there are also problems explaining the
large third generation quark masses [10]. As in QCD, we would also expect further technihadrons
and vectorial resonances with masses not too far from the condensation scale [11].
Modern Composite Higgs models (CHM) are based on the same underlying idea, but we will introduce
an additional energy scale. At a scale m∗ the global group G spontaneously breaks to H yielding
massless Goldstones with decay constant f in the coset. Gauge interactions of the elementary
sector with the composite one explicitly break G and turn the Goldstones into massive pseudo
Nambu–Goldstone Bosons (pNGBs). Loops of SM fermions, gauge bosons and hyperquark mass
terms will generate a Higgs potential, which then allows for EW symmetry breaking. Here, the
EW scale is generated dynamically and can be smaller than f . The composite Higgs thus can be
naturally lighter than the other resonances.
The ratio v/f = sin θ ≪ 1 is determined by the orientation of the SM vacuum with respect to
the “true” vacuum [11]. A very small θ scales up the masses of other resonances and suppresses
corrections to EW precision measurements, such as the Peskin–Takeuchi parameters [12]. However,
to avoid the Naturalness problem, the misalignment angle θ shouldn’t be too small. Today, some
degree of fine-tuning seems necessary due to experimental constraints, but new physics may still
emerge at the lower multi-TeV scale [12,13].
There will be further composite resonances besides Spin-0, formed by two or more fermions. In this
thesis, we will focus on Spin-1 resonances that emerge in the electroweak sector. These are excited
composite states of two hyperfermions, similar to the ρ mesons in QCD. We begin in chapter 2 with
a summary of the techniques and methods required to construct the Lagrangian and motivate the
minimal coset SU(5)/SO(5), which is discussed in more detail in chapter 3. In chapter 4, constraints
on the parameter space are derived by comparison with up-to-date ATLAS and CMS searches.
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2 Composite Higgs Models

This chapter shall give an overview on the theoretical background needed to work with a specific
CHM. First, the general idea is described before we go into more details on how to construct the
Lagrangian involving pNGBs and Spin-1 resonances in sec. 2.2 and sec. 2.3.

2.1 Goldstone boson Higgs

The underlying idea of CHM is to describe the Higgs boson as a Goldstone boson, emerging
from spontaneous symmetry breaking of G to the subgroup H. The breaking shall happen at the
confinement scale m∗ where, due to the Goldstone theorem [14], for each broken generator in the
coset G/H one massless scalar forms. As discussed in chapter 1, this confinement scale is bound to
the multi-TeV range from below by SM precision measurements and from above by the Naturalness
argument.
We call the EW symmetry preserving vacuum Σ0. It can be used to split the generators TA of G
into unbroken T a and broken generators Xj [15, 16]

T aΣ0 +Σ0(T
a)T = 0, XjΣ0 − Σ0(X

j)T = 0 . (2.1)

With a slight abuse of notation, we define the pNGB matrix as

Π = πjXj , (2.2)

containing one scalar πj for each broken generator. The global group G is also explicitly broken due
to mass terms of the hyperquarks and gauging the hyperquarks only under the SM subgroup. In
consequence, this does also lead to mass terms for the Higgs boson and other scalars. That means
we are left with a set of massive pNGBs but can also expect further composite states with higher
Spin similar to the Hadrons in QCD. Leading order expressions of the potential and arising mass
terms for the pNGBs were discussed e.g. in [16,17].
In this work, all fields will be defined with respect to the “true” vacuum which is misaligned by the
angle θ and breaks the EW symmetry [18]

Σ̃0 = Ω(θ) · Σ0 · ΩT (θ) . (2.3)

The misaligned generators still need to fulfill eq. (2.1) from which it’s easy to derive

T̃ a = Ω(θ) · T a · Ω(θ)† , X̃j = Ω(θ) ·Xj · Ω(θ)† , (2.4)

leading to

T̃AΣ̃0 ± Σ̃0(T̃
A)T

= Ω(θ) · TA · Ω(θ)†Ω(θ) · Σ0 · ΩT (θ)± Ω(θ) · Σ0 · ΩT (θ)Ω(θ)∗ · (TA)T · Ω(θ)T

= Ω(θ) ·
(
TAΣ0 ± Σ0(T

A)T
)
· ΩT (θ) = 0 . (2.5)
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2 Composite Higgs Models

The simplest ansatz of misalignment is given by a rotation along the Higgs generator [19]

Ω(θ) = ei
√
2⟨Π⟩/f = ei

√
2Xhθ . (2.6)

Here, we assume that only the Higgs develops a non-zero vacuum expectation value (VEV), which
encodes EW symmetry breaking. In general, the other pNGBs might also get a non-zero VEV. If
this is the case we should choose a more general misalignment in order to minimize the potential
and rotate into the “true” vacuum [18].
Studying fluctuations around the misaligned vacuum, we have to consider all degrees of freedom (DOF)
of the coset, accumulated by the Goldstone matrix U defined with the misaligned pNGB matrix Π̃

U = exp

(
i
√
2

f

∑
πjX̃

j

)
= ei

√
2/fΠ̃ = eΠ̃

′
, (2.7)

which will play a central role in constructing invariant terms for the Lagrangian. Here, f is the decay
constant of the pNGBs

f = v sin θ , (2.8)

and the numerical prefactor in the exponent of U is chosen such, that the pNGBs are canonically
normalized.

2.2 CCWZ construction

The Callan-Coleman-Wess-Zumino (CCWZ) construction is named after the authors of the two
papers [20, 21] from 1969. It can be used for general low-energy effective Lagrangians involving
symmetry breaking(s). The benefits include its independence from specific details of the model, such
as the representation rπ of the Goldstones. For the following explanations, we will follow roughly
chapter 2.3 of [6].
If a global symmetry is spontaneously broken, a massless, scalar Goldstone field occurs for each
broken generator. The Goldstone matrix (2.7) does occupy all those physical degrees of freedom
with respect to the vacuum.
The underlying high-energy theory must be invariant under transformations of the full symmetry
group G. Therefore we take a look at how U transforms under g ∈ G. The group element can be
split into broken Xj and unbroken T a generators

g[α] = exp
(
iαAT

A
)
= exp

(
ifj [α]X

j
)
· exp

(
ifa[α]T

a
)
, (2.9)

where the coefficients fj , fa are fixed by the commutator relations of the generators. We can
decompose their algebra such that

[T, T ] ∼ T , [X,T ] ∼ X , [X,X] ∼ T (2.10)

where we used the fact that H is a subgroup for the first two relations and the last one defines the
coset to be called symmetric, which is the case for the models we are interested in.
When acting with g on the Goldstone matrix, we can decompose the operator again into two
exponentials

g · U [Π] = U [Π(g)] · h[Π; g] , (2.11)

U [Π(g)] = g · U [Π] · h−1[Π; g] , (2.12)

10



2.2 CCWZ construction

where h[Π; g] ∈ H is an element of the unbroken subgroup and depends on Π.
U [Π(g)] is the exponential of all broken generators which implicitly defines the non-linear transformed
Goldstone fields Π(g). Their transformation law is in general highly complicated, while the
transformation law of U [Π] is fairly simple. From eq. (2.12) we can see that U transforms as
a tensor with one index in G and the other in H.
Before going on, we take a look at the appearing representations when breaking G. The generator
algebra decomposes under H as

AdG = AdH ⊕ rπ , (2.13)

where rπ is the representation of the Goldstones under H.
Working out the expanded transformation of Πj for the broken generators gG/H = 1+ iαjX

j leads
to [6]

Π
(gG/H)

j = Πj +
f√
2
αj +O

(
Π2

f

)
. (2.14)

Due to the constant term αj , this is called “shift symmetry”. To get a Lagrangian invariant under
shifts, non-derivative terms of Π, which could lead to potential terms, are forbidden.
With the help of the Goldstone matrix U one can construct the so-called Maurer-Cartan one-form
ωµ

ωµ = iU−1∂µU . (2.15)

It can be decomposed into so-called dµ and eµ symbols, which are the projections to the broken,
respectively unbroken generators

ωµ = dµjX
j + eµaT

a = dµ + eµ . (2.16)

Following eq. (2.12) their transformation laws are easily worked out

ωµ → ih[π; g] · U−1g−1g ∂µ
(
Uh−1[π; g]

)
= h[π; g] · ωµ · h−1[π; g] + ih[π; g] · ∂µ · h−1[π; g] , (2.17)

dµ → h[π; g] · dµ · h−1[π; g] , (2.18)

eµ → h[π; g] · (eµ + i∂µ) · h−1[π; g] . (2.19)

We see that dµ transforms linearly with h like the Goldstone fields and expanding dµ to first order
yields ∝ ∂µΠ. But in contrast to simple ∂µΠ the higher orders in dµ ensure that it transforms as a
complete representation rπ under full G. The eµ symbol transforms in the adjoint representation of
H, see eq. (2.13), so it transforms as if it was a gauge field of a local H symmetry.
For the pNGBs, all Lagrangian terms invariant under G can be derived by combinations of dµ, eµ
and derivatives. The only exceptions are the Wess-Zumino-Witten (WZW) terms based on a global
anomaly in G.
The picture gets more interesting if we promote G to be a local symmetry and introduce gauge fields
Fµ = FA

µ TA = VµaT
a +AµjX

j . The generalization is straight forward by substituting the partial
derivative with the covariant one

ωµ = iU−1DµU = iU−1 (∂µ − iFµ)U . (2.20)

The d[π, F ] and e[π, F ] symbols still transform as before but now under the local group G and
contain pNGBs as well as gauge fields.
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2 Composite Higgs Models

We can start to identify all possible operators, which transform homogeneously under H. Those are
then used to build Lagrangian terms invariant under G. The simplest operator of this kind is given
by the d symbol itself. This operator is the only one available at the order of O(p) and can be used
to construct the O(p2) operators

d†µidνj : r̄π ⊗ rπ = 1H +AdjH + . . . , (2.21)

where the dots indicate further representations depending on the coset. Notice, that dµ is actually
hermitian.
The orders of p refer to the power counting in chiral expansion, equal to the number of derivatives of
pNGBs [22]. The simplest invariant is given by the singlet

Lπ =
f2

4
Tr dµd

µ , (2.22)

which does contain the kinetic term of the Goldstone bosons and mass terms of the axial-vector
gauge fields Aµj at lowest order expansion.
Further, we can act with a suitable covariant derivative on the d symbol, given by [6]

(D · d)µνj = ∂µdνj − ieµa
(
taπ)

i
jdνi ∈ rπ , (2.23)

(D · d)µνj → h[π; g] ·
(
∂µdνj − ieµa

(
taπ)

i
jdνi

)
· h[π; g]−1 (2.24)

Furthermore, one can use the fact, that the e symbol transforms as a gauge field to construct its
field strength tensor [6]

Eµν = EµνaT
a = i[Dµ, Dν ] = ∂µeν − ∂νeµ − i[eµ, eν ] , (2.25)

Eµν → h[π; g] · Eµν · h[π; g]−1 . (2.26)

Another possibility might be, dressing the field strength tensor of the gauge fields with Goldstone
matrices, such that it transforms as a tensor with indices in H

Fµν = U [Π]−1 · Fµν [F ] · U [Π] (2.27)

= U [Π]−1 · (∂µFν − ∂νFµ − i[Fµ, Fν ]) · U [Π] (2.28)

=
(
FAd

)
µνa

T a +
(
Frπ

)
µνj
Xj . (2.29)

But it turns out that d2, D · d and E are already all possible independent O(p2) operators and it is
possible to express F as [6] (

FAd

)
µνa

= Eµνa +
(
d2Adj

)
µνa

, (2.30)(
Frπ

)
µνj

=
(
D · d

)
µνj
−
(
D · d

)
νµj

. (2.31)

Here, d2Adj is the adjoint contraction of eq. (2.21). The invariant Lagrangian term TrFµνFµν , can be
simplified by using the cyclicity of the trace to get the well-known kinetic gauge terms TrFµνF

µν .

2.3 Hidden symmetry formalism

Apart from the pNGBs, there are also Spin-1 resonances expected, similar to the ρ-meson in QCD.
To describe those resonances, we will utilize the Hidden symmetry formalism, which was described
in [23, 24], see also [25]. It can be shown that any nonlinear sigma model corresponding to the coset
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2.3 Hidden symmetry formalism

space G/H is gauge equivalent to a linear model of the symmetry Gglobal × Glocal.
The global group, in the following G0, will then be partially gauged to contain the SM gauge bosons1

Wµ, Bµ, while Glocal = G1 contains a complete set of heavy spin-1 resonances, which transform as
the adjoint of G.
We will use the previous described CCWZ formalism to construct the Lagrangian. Therefore, we
define for each group Gi the covariant derivative of their Goldstone matrix

DµU0 =
(
∂µ − igWµ − ig′Bµ

)
U0 ,

DµU1 =
(
∂µ − ig̃Vµ − ig̃Aµ

)
U1 . (2.32)

The SM bosons are defined with their corresponding non-rotated generators, which ensures that the
underlying hyperfermions have quantum numbers under SU(2)L and U(1)Y hypercharge

Bµ = BµT
3
R , Wµ =

3∑
i

W i
µT

i
L . (2.33)

The composite Spin-1 resonances are divided into vectors Vµ associated to unbroken generators T̃ a,
and axial-vectors Aµ associated to the broken generators X̃j

Vµ =
∑
a

VaµT̃ a , Aµ =
∑
j

Aj
µX̃

j . (2.34)

Both copies of Gi are spontaneously broken to Hi via the two Goldstones Ui. Next, H0 × H1 is
broken to a diagonal H where another set of Goldstones k emerge

K = exp
(
i
√
2kaT̃a/fK

)
. (2.35)

This K field transforms with one index in each subgroup Hi [26]

K → h(g0, π0)Kh
†(g1, π1) , (2.36)

and its covariant derivative reads

DµK = ∂µK − ie0µK + iKe1µ . (2.37)

The Goldstones in K can be gauged away and provide longitudinal DOF for the vector states Vµ.
Further, a linear combination of the pNGBs π0 and π1 provide longitudinal DOF for the axials Aµ.
We can now construct an effective Lagrangian involving the field strengths of the SM gauge bosons
and Spin-1 resonances eq. (2.27), contractions of diµ symbols, a kinetic K field term and a further
invariant contraction using the transformation behavior of K [26]. In the following, we normalize
all generators to TrT aT b = δab, because in chapter 3 we will work with 5-dimensional matrix
representations of SO(5), which have Dynkin2 index 1. With this convention, the Lagrangian reads

L = −1

4
TrWµνW

µν − 1

4
BµνB

µν − 1

4
TrFµνFµν

+
f20
4

Tr d0,µd
µ
0 +

f21
4

Tr d1,µd
µ
1 +

f2K
4

TrDµK (DµK)† +
rf21
2

Tr d0,µKd
µ
1K

† , (2.38)

1We restrict the discussion here to the electroweak sector, but the same formalism can be used in the color sector,
gauging with Gluons.

2The Dynkin index I(R) of a representation R is defined as TrT aT b = δab. We use the same convention as
GroupMath [27], which is that the biggest root of a simple algebra has norm 1. This means that the Fundamentals
of SU and Sp have I(F ) = 1/2.
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2 Composite Higgs Models

where we defined the field strength tensors as Fµν = ∂µFν − ∂νFµ − ig̃[Fµ, Fν ] and Fµ = Vµ +Aµ.
The kinetic term of K can be simplified in the unitary gauge K = 1 to

f2K
4
Tr
(
DµKDµK

†
)
=
f2K
4
Tr
(
e0µe

µ
0 − 2e0µe

µ
1 + e1µe

µ
1

)
, (2.39)

where we used the fact that the eµ symbol is hermitian.

d and e symbols

The Maurer Cartan form eq. (2.20) of the global sector expanded up to three fields reads

ω0,µ =
(
i∂µΠ̃

′
0 + gWµ + g′Bµ

)
−
(
i

2

[
Π̃′

0, ∂µΠ̃
′
0

]
+ g
[
Π̃′

0,Wµ

]
+ g′

[
Π̃′

0, Bµ

])
+

1

2

(
i

3

[
Π̃′

0,
[
Π̃′

0, ∂µΠ̃
′
0

]]
+ g
[
Π̃′

0,
[
Π̃′

0,Wµ

]]
+ g′

[
Π̃′

0,
[
Π̃′

0, Bµ

]])
+ . . . , (2.40)

where the Baker–Campbell–Hausdorff formula was used. Using the commutator structure from
eq. (2.10), the d0µ and e0µ symbols can be written as

d0,µ = i∂µΠ̃
′
0 + gX̃(Wµ) + g′X̃(Bµ)

− g
[
Π̃′

0, T̃ (Wµ)
]
− g′

[
Π̃′

0, T̃ (Bµ)
]

+
g

2

[
Π̃′

0,
[
Π̃′

0, X̃(Wµ)
]]

+
g′

2

[
Π̃′

0,
[
Π̃′

0, X̃(Bµ)
]]

+
i

3!

[
Π̃′

0,
[
Π̃′

0, ∂µΠ̃
′
0

]]
+ . . . , (2.41)

e0,µ = gT̃ (Wµ) + g′T̃ (Bµ)

− g
[
Π̃′

0, X̃(Wµ)
]
− g′

[
Π̃′

0, X̃(Bµ)
]
− i

2

[
Π̃′

0, ∂µΠ̃
′
0

]
+
g

2

[
Π̃′

0,
[
Π̃′

0, T̃ (Wµ)
]]

+
g′

2

[
Π̃′

0,
[
Π̃′

0, T̃ (Bµ)
]]

+ . . . , (2.42)

with the shorthand notations T̃ (Wµ) =W i
µTr
(
T i
LT̃a

)
T̃a and T̃ (Bµ) = BµTr

(
T 3
RT̃a

)
T̃a, respectively

X̃(Wµ) = W i
µTr
(
T i
LX̃j

)
X̃j and X̃(Bµ) = BµTr

(
T 3
RX̃j

)
X̃j . These are the projections of the SM

gauge bosons into the subgroup H, respectively into the coset, with respect to the “true” vacuum.
In the local copy the expressions are given by

d1,µ = i∂µΠ̃
′
1 + g̃Aµ − g̃

[
Π̃′

1,Vµ
]
+
g̃

2

[
Π̃′

1,
[
Π̃′

1,Aµ

]]
+

i

3!

[
Π̃′

1,
[
Π̃′

1, ∂µΠ̃
′
1

]]
+ . . . , (2.43)

e1,µ = g̃Vµ − g̃
[
Π̃′

1,Aµ

]
− i

2

[
Π̃′

1, ∂µΠ̃
′
1

]
+
g̃

2

[
Π̃′

1,
[
Π̃′

1,Vµ
]]

+ . . . . (2.44)

2.3.1 Physical Pions

Substituting Π̃′
n =
√
2i/fnΠ̃n from eq. (2.7), the kinetic pion terms read

Lkinπ =
1

2
Tr

(
∂µΠ̃0∂µΠ̃0 + ∂µΠ̃1∂µΠ̃1 + 2r

f1
f0
∂µΠ̃1∂µΠ̃0

)
. (2.45)

14



2.3 Hidden symmetry formalism

Obviously, those are not yet proper kinetic terms due to the ∝ r term. This is why one has to
redefine the pNGBs into πA and πB

πj0 =
πjA√

2
√
1 + rf1/f0

−
πjB√

2
√

1− rf1/f0
,

πj1 =
πjA√

2
√
1 + rf1/f0

+
πjB√

2
√

1− rf1/f0
, (2.46)

to get

Lkinπ =
1

2

(
∂µπ

j
A∂µπ

j
A

1 + rf1/f0
+
∂µπ

j
B∂µπ

j
B

1− rf1/f0
+
rf1
f0

[
∂µπ

j
A∂µπ

j
A

1 + rf1/f0
−
∂µπ

j
B∂µπ

j
B

1− rf1/f0

])
=

1

2

(
∂µπ

j
A∂µπ

j
A + ∂µπ

j
B∂µπ

j
B

)
. (2.47)

The fields πA, πB have potential mixing terms with the axial vectors derived from

f21
4
d1µd

µ
1 +

rf21
2
d0µd

µ
1 ⊃ −

g̃√
2

(
f1Tr ∂

µΠ̃1Aµ +
rf21
f0

Tr ∂µΠ̃0Aµ

)
= − g̃f1

2

(√
1 + rf1/f0Tr ∂

µΠ̃AAµ +
√
1− rf1/f0Tr ∂µΠ̃BAµ

)
. (2.48)

For physical pNGBs they have to vanish obviously. As mentioned before, one linear combination πU
are eaten by the longitudinal DOF of the axial vectors, while the set of physical pNGBs πP remain
in the spectrum. With the ansatz

πjA = cosα · πjP − sinα · πjU ,

πjB = sinα · πjP + cosα · πjU , (2.49)

and requiring that the quadratic terms of Aµ and πP vanish, we derive the condition

tanα = −

√
1 + rf1/f0
1− rf1/f0

. (2.50)

Combining eq. (2.46) and eq. (2.49) gives the final transformation

πj0 =
f0
f
πjP , πj1 = πjU −

rf1
f
πjP , (2.51)

with the pNGB decay constant

f =
√
f20 − r2f21 . (2.52)

2.3.2 Vππ coupling

Having defined the transformation laws for physical pNGBs in eq. (2.51), we can take a look at the
coupling parameter gV ππ of the vectors Vµ to two physical pNGBs. In principle, this parameter can
be calculated on a lattice as it was done for QCD in [28], and it has a physical interpretation.
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2 Composite Higgs Models

There is only one independent operator structure in the Lagrangian3. Collecting all terms results
in

LVππ = ig̃
[
Tr
(
∂µΠ̃1

[
Π̃1,Vµ

])
+
f2K
2f21

Tr
(
Vµ
[
Π̃1, ∂µΠ̃1

])
−
f2K
2f20

Tr
(
Vµ
[
Π̃0, ∂µΠ̃0

])
+
rf1
f0

Tr
(
∂µΠ̃0

[
Π̃1,Vµ

]) ]
=
ig̃

f2

[
f21 r

2 +
f2Kr

2

2f2
−
f2K
2f2
− f21 r2

]
Tr
(
Vµ
[
Π̃P , ∂µΠ̃P

])
=
i

2
gV ππ · Tr

(
Vµ
[
Π̃P , ∂µΠ̃P

])
= igV ππ ·

fija
2
VaµπiPπ

j
P , (2.53)

where fija is the SU(5) structure constant and we defined the Vector-pNGB-pNGB coupling as

gV ππ =
g̃f2K(r2 − 1)

f2
, (2.54)

which coincides with the definition in [29].

2.4 Partial Compositeness

An important attribute of the Higgs in the SM is its role in generating the masses of all fermions
through Yukawa couplings. We can naively write down an SM inspired operator for the top quark of
the form

λt

Λd−1
UV

t̄LOc
StR , (2.55)

with OS a composite scalar operator with the same quantum numbers as the Higgs field. Examining
the prefactor, the interaction strength is determined by the dimension of the scalar operator. The
dimensionless coefficient λt depends on the underlying microscopic theory and can be expected to
be of order one [6]. The corresponding Yukawa coupling below the confinement scale m∗ would be
given by

yt ≃ λt[m∗] ≃ λt
(
m∗

ΛUV

)d−1

, (2.56)

where d should be at least two to prevent any further Naturalness problem4. But now it is difficult
to describe a realistic top Yukawa coupling of the order one. We end up with an upper bound on the
UV scale5, which will be far too low to suppress SM operators with dimension > 4.
A solution to generate realistic Yukawas in CHM without relying on special selection rules is the
so-called Partial Compositeness hypothesis [30]. The matter fermions are described again external
to the composite sector but couple via linear interaction terms of the form

Lint =
λtL

Λ
dL−5/2
UV

t̄LOL
F +

λtR

Λ
dR−5/2
UV

t̄ROR
F + . . . , (2.57)

3It is easy to show that Tr(∂µΠ[Π,Vµ]) = −Tr(Vµ[Π, ∂µΠ])
4A scalar operator with dimension 1 would be an elementary scalar, which we must avoid to get rid of the Naturalness

problem.
5The confinement scale m∗ is already bound to the multi-TeV scale due to Naturalness, see chapter 1.
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2.5 Minimal models

where “. . .” includes analogous terms for all other SM quarks. These vertices lead to mass mixing in
the Infrared (IR) between the elementary quarks and the fermionic composite resonances OF . The
physical eigenstates are given by a linear combination. If the operator dimensions are d ∼ 5/2, we
can have a large Ultraviolet (UV) scale ΛUV ≫ m∗ and still get a large top Yukawa coupling

λtL [m
∗] ≃ λtL

(
m∗

ΛUV

)d−5/2

. (2.58)

In principle, a fermionic operator is only bound to d ≥ 3/2 and there is no obstruction against
having d ≈ 5/2.
Our notations used above refers directly to the top quark, because it has by far the largest Yukawa
coupling, which might originate from a large mixing with the so-called “top partners” T . In general,
the different flavors might couple to operators of different dimensions d ≥ 5/2, which could explain
the mass hierarchy. For all such operators, no further Naturalness problem will be reintroduced,
because |OF |2 ≳ 5.
The top partners T shall be vector-like, such that they can have a Dirac mass term [11]

L = t̄Li/∂tL + T̄L(i/∂ −m)TL +
λtL

Λ
dL−5/2
UV

t̄LTL + h.c. . (2.59)

The mass matrix can be diagonalized yielding (for now) massless SM quarks

tphysL = cosϕLtL + sinϕLTL . (2.60)

The mixing angle ϕL determines the degree of compositeness. The SM fermions get their mass
entirely from their composite components T , which have Yukawa-like interactions with the pNGBs
in the composite sector generating Yukawa couplings of the form

Y ∗ sinϕL sinϕR , (2.61)

where Y ∗ is a Yukawa coupling within the composite sector [11]. From here, it is obvious that heavier
SM fermions as the top quark can be described with a larger degree of compositeness, while the light
quarks and leptons do barely mix.
The standard approach to construct fermionic top partners are baryons built from three hypercolor
fermions, which have dimension 9/2.6 Those states need to pick up a large anomalous dimension,
taking them from 9/2 towards 5/2 [31].
Contrary to the considerations in sec. 2.2, the specific implications of partial compositeness depend
on the details of the model, how the SM fermions are embedded in G and under which representation
the top partners transform.
With regard to Spin-1 resonances we highlight that there can be partial compositeness contributions
to the coupling to tt̄, respectively tb̄. These are generated by couplings of the Spin-1 resonances to
top partner baryons [29].

2.5 Minimal models

In the previous sections the methods to work with CHM were specified in a very general way,
applicable for an arbitrary coset. This section shall address the question how to find realistic models.

6Depending on the representation, there is also the possibility of constructing fermionic invariants with dimension
7/2 [31].
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2 Composite Higgs Models

Before all, based on the considerations made in [31–33], we will specify the framework in which we
are going to work to constrain the class of models of interest to a set of so-called minimal models.
First of all, we will assume a purely fermionic UV completion, without introducing elementary scalars
again. Further, a simple hypercolor group GHC shall be considered. We work with left-handed Weyl
fermions in the representation n1R1 + ...+ npRp, where Ri is an irreducible representation (irrep) of
the GHC and ni is the number of copies, respectively flavors.
For each Ri, the flavor symmetry is given by U(ni) ∼ SU(ni)×U(1). One linear combination of all
U(1) induces a Adler-Bell-Jackiw (ABJ) anomaly, which can be associated with a very heavy state.
Consequently, the anomaly free global symmetry group is given by G = SU(n1)×...×SU(np)×U(1)p−1.
For simplicity, we will limit the discussion to the p = 2 case in the following, as it already contains
all important aspects, yielding G = SU(m)× SU(n)×U(1) with two classes of fermions ψ ∈ mR1

and χ ∈ nR2. The group SU(m) shall describe the electroweak sector, containing SU(2)L × SU(2)R,
whereas SU(n) contains the color sector.
Next, we will discuss prerequisites and constraints which need to be fulfilled by this type of models.
An important condition is the possibility of allowing a breaking chain via Gmid = SU(3)c× SU(2)L×
SU(2)R ×U(1)X down to the SM group GSM = SU(3)c × SU(2)L ×U(1)Y. The additional U(1)X in
Gmid is used to obtain the correct hypercharge values Y = T 3

R +X for the fermions. Further, we
demand the existence of a suitable Higgs candidate within the electroweak coset G/H ∋ (1, 2, 2)0
of Gmid. Moreover, GSM shall not contain any ’t Hooft anomalies, such that we can gauge it and
couple hypercolor fermions to the SM.
We also want to take into account the possibility of top partners to explain the large top quark mass,
as briefly oulined in sec. 2.4. This yields restrictions on the representation of three fermion bound
states, which will play the role of potential top partners.
As we already mentioned in sec. 2.4, they also need to get a large anomalous dimension. This can
be achieved if the theory is conformal in the UV. But in the IR it needs to be strongly interacting,
otherwise a condensate can not form. A possible solution are theories which are brought into the
conformal window only by adding heavy hyperfermions, which explicitly break conformal invariance
at lower energies [32]. This means, we search for an asymptotically free theory, outside of the
conformal window. This has to rely on some heuristic arguments, because there is no consensus
on how to characterize the conformal region of non-supersymmetric gauge theories outside of the
perturbative regime [33].
In the context of minimal models, we are interested only in the smallest ni such that, for a given set
of Ri, all the aforementioned constraints are satisfied.
If we choose R1 to be a real representation, the condensate ⟨ψψ⟩, which is proportional to the vacuum
of the underlying subgroup, is symmetric. It transforms as the symmetric 2-index representation of
SU(m). This fixes the type of coset to SU(m)/SO(m). The smallest subgroup in which the custodial
group can be embedded would be SO(4) ∼ SU(2)× SU(2), but the pNGBs of SU(4)/SO(4) would
be represented in the 9 of SO(4), equivalent to (3, 3) of SU(2)L × SU(2)R, which does not contain
any Higgs bidoublet. Larger cosets with m ≥ 5 fulfill the requirements. If R1 is pseudo-real the
condensate is antisymmetric and the coset has to be of the type SU(m)/Sp(m) with m ≥ 4.
For the color sector, the group SU(n) must contain the subgroup SU(3)c ×U(1)X , which fixes the
minimal case to n = 6 with subgroups SO(6) or Sp(6).
Further, one is able to restrict the possible hypercolor groups by requiring an asymptotic free theory.
It turns out, that the only feasible hypercolor groups are of type Sp(NHC) or SO(NHC) [31]. Only if
we go to p > 2, SU(NHC) is an option too. The details of these considerations would go beyond the
scope of this work and can be found in [31,33]. In tab. 2.1 all 12 minimal models, classified in [33],
are characterized by their hypercolor group GHC, irreps of the underlying Weyl spinors ψ, χ and the
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2.5 Minimal models

GHC ψ χ EW Coset Color Coset Name

SO(7) 5× F 6× Spin

SU(5)/SO(5) SU(6)/SO(6)

M1

SO(9) 5× F 6× Spin M2

SO(7) 5× Spin 6× F M3

SO(9) 5× Spin 6× F M4

Sp(4) 5×A2 6× F SU(5)/SO(5) SU(6)/Sp(6) M5

SU(4) 5×A2 3× (F,F)
SU(5)/SO(5) SU(6)/SO(6)

M6

SO(10) 5× F 3× (Spin,Spin) M7

Sp(4) 4× F 6×A2
SU(4)/Sp(4) SU(6)/SO(6)

M8

SO(11) 4× Spin 6× F M9

SO(10) 4× (Spin,Spin) 6× F
SU(4)2/SU(4) SU(6)/SO(6)

M10

SU(4) 4× (F,F) 6×A2 M11

SU(5) 4× (F,F) 3× (A2,A2) SU(4)2/SU(4) SU(3)2/SU(3) M12

Table 2.1: Classification of minimal CHM structured by their cosets, based on [33]. F, Spin and A2

refers to the fundamental, spinor and 2-index antisymmetric hypercolor irrep of the fermions.

corresponding breaking patterns. All listed models are “vector-like” in the way that mass terms can
be added for each Spinor and no ⟨ψχ⟩ condensate will form.
In the following, the electroweak coset SU(5)/SO(5) will be studied in more detail, which is part of
the models M1 to M7.
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3 Electroweak SU(5)/SO(5) Coset

After providing a brief overview of possible minimal cosets in sec. 2.5, we will now focus on the coset
SU(5)/SO(5), which is realized as the electroweak sector in the models M1-M7 according to the
classification in [33].

3.1 Vacuum structure & Particle content

Early work on this coset can be found in [34], whereas also more recently the scalars were studied
e.g. in [35,36]. Here, we will follow the presentation given in [18].
The reference vacuum Σ0 has to transform as a real two-index symmetric representation of SU(5)
and shall keep the EW symmetry unbroken

Σ0 =


0 iσ2

−iσ2 0

1

 =



0 0 0 1 0

0 0 −1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 1


, (3.1)

where in general the sign of the entry in the lower right could have been chosen differently. The
generators of the custodial symmetry group SU(2)L × SU(2)R are embedded into SU(5) as

T i
L =

1

2

12 ⊗ σi

0

 , T i
R =

1

2

σi ⊗ 12

0

 , (3.2)

with Tr
(
T iT j

)
= δij . The unbroken T a and broken Xj generators can be determined from eq. (2.1).

As stated in sec. 2.1, we rotate the vacuum along the Higgs generator Xh with

Xh =
1

2



0

1

−1

0

0 1 −1 0


. (3.3)
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3 Electroweak SU(5) / SO(5) Coset

The rotation matrix Ω = exp
(
i
√
2Xhθ

)
defined in eq. (2.6), reads

Ω(θ) =



1 0 0 0 0

0 c2θ/2 s2θ/2 0 isθ/
√
2

0 s2θ/2 c2θ/2 0 −isθ/
√
2

0 0 0 1 0

0 isθ/
√
2 −isθ/

√
2 0 cθ


, (3.4)

with the shorthand notations sθ = sin θ and cθ = cos θ. The resulting misaligned vacuum eq. (2.3) is
given by

Σ̃0 =



0 0 0 1 0

0 −s2θ −c2θ 0 is2θ/
√
2

0 −c2θ −s2θ 0 −is2θ/
√
2

1 0 0 0 0

0 is2θ/
√
2 −is2θ/

√
2 0 c2θ


. (3.5)

Following the prescription in sec. 2.3, the symmetry group gets extended to SU(5)0 × SU(5)1, where
each pNGB matrix Π0,1 contains dim(SU(5))−dim(SO(5)) = 14 generators. One linear combination,
see eq. (2.51), provides mass terms for the 14 axial vectors Aµ, whereas the other set are physical
pNGBs. Further, we have 10 vector resonances Vµ which get their mass from the Goldstones in K,
see eq. (2.35).

Embeddings

We embed all states with respect to the non-rotated vacuum Σ0 for simplicity. The rotated expressions
used in the Lagrangian are then easily obtained by acting with Ω as in eq. (2.4). Starting with the
scalars, the 14 of SO(5) decomposes to (3,3)⊕ (2,2)⊕ (1,1) of SU(2)L × SU(2)R, which can be
parameterized as

Π =
1√
2


η√
10
12 + π0 π+ H

π−
η√
10
12 − π0 −H̃

H† −H̃† − 4√
10
η

 , (3.6)

with H̃ = iσ2H
∗ and the bitriplets are given by π0 = (1/

√
2)πi0σi, π− = πi−σi = (π+)

†.
For further use, it is helpful to decompose the SU(2)L × SU(2)R representations into the diagonal
SU(2)D. This is suggested by the fact that it is preserved by the color sector vacuum, whereas the
hypercharge U(1)Y is constructed from generators of both sectors [36]. The scalar states might
undergo mass mixing depending on the details of their potential terms. For simplicity, we will ignore
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3.1 Vacuum structure & Particle content

this possibility and assume similar masses of all the pNGBs.
The Higgs bidoublet1 is given by

H =

 ϕ+

1/
√
2(h+ iϕ0)

 . (3.7)

The bitriplet decomposes to (3,3)→ 5⊗ 3⊗ 1 of SU(2)D. The transformation laws are taken from
sec. A.1 of [37]

π++ = η++
5 , π0+ =

iη+3 − η
+
5√

2
, π+0 =

iη+3 + η+5√
2

,

π00 =
η01 −

√
2η05√

3
, π−+ =

√
2η01 + η05 + i

√
3η03√

6
. (3.8)

We use the custodial generators eq. (3.2) to embed the Wµ triplet as

Wµ =
1√
2



1√
2
W 3

µ W̃+
µ 0 0

W̃−
µ

−1√
2
W 3

µ 0 0

0 0 1√
2
W 3

µ W̃+
µ

0 0 W̃−
µ

−1√
2
W 3

µ

0


. (3.9)

As shown in tab. 3.1, he axial vector Aµ decomposes identically to the pNGBs and could be embedded
in the same way. But to get a real mass mixing matrix, the triplet aµ is defined with a different
phase compared to the scalar triplet ϕ. The explicit expression in terms of SU(2)D fields can be
found in appendix A. The vector resonances Vµ transform as a 10 of SO(5), which decomposes to
(3,1)⊕ (1,3)⊕ (2,2) of SU(2)L × SU(2)R, see tab. 3.1. From the (3,1)⊕ (1,3) representation, two
linear combinations can be formed that are triplets of SU(2)D, namely v1µ and v2µ. In terms of
SU(2)D representations the vector matrix can be written as

Ω(θ)† · Vµ · Ω(θ) =
1√
2



v01µ
v+1µ+v+2µ√

2

v+1µ−v+2µ√
2

0 −r̂+µ
v−1µ+v−2µ√

2
−v02µ 0

v+1µ−v+2µ√
2

r̂0µ−ix̂0
µ√

2

v−1µ−v−2µ√
2

0 v02µ
v+1µ+v+2µ√

2

r̂0µ+ix̂0
µ√

2

0
v−1µ−v−2µ√

2

v−1µ+v−2µ√
2

−v01µ r̂−µ

−r̂−µ
r̂0µ+ix̂0

µ√
2

r̂0µ−ix̂0
µ√

2
r̂+µ 0


. (3.10)

A more detailed derivation is given in appendix A. The notation of a vector resonance with a hat
indicates that it does not have mass mixing terms, while the other states mix with the SM gauge
bosons as we will see shortly.

1Note, that the SU(2)D triplet ϕ will not remain in the scalar spectrum because it provides the longitudinal DOF for
the SM gauge bosons.
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3 Electroweak SU(5) / SO(5) Coset

SU(2)D SU(2)L × SU(2)R SO(5)

Vµ

v0±1µ 3
(3,1)⊕ (1,3)

10
v0±2µ 3

r̂0±µ 3
(2,2)

x̂0µ 1

Aµ

a0±µ 3
(2,2)

14

ŷ02µ 1

â0,±,±±
5µ 5

(3,3)â0±3µ 3

â01µ 1

ŷ01µ 1 (1,1)

Table 3.1: Classification of spin-1 resonances in the coset SU(5)/SO(5) in terms of their quantum
numbers w.r.t. SO(5), SU(2)L × SU(2)R and SU(2)D. Particles denoted as p̂ do not mix with the
SM gauge bosons.

3.2 Vector mass terms

With the explicit expressions of dµ and eµ in eqs. (2.41) to (2.44), the quadratic vector terms of the
Lagrangian in eq. (2.38) are given by

Lmass = Tr
[f20
4

(
gX̃(Wµ) + g′X̃(Bµ)

)2
+
f2K
4

(
gT̃ (Wµ) + g′T̃ (Bµ)

)2
+
f21
4
g̃2A2

µ +
f2K
4
g̃2V2µ

+
rf21
2

(
gX̃(Wµ) + g′X̃(Bµ)

)
g̃Aµ −

f2K
2

(
gT̃ (Wµ) + g′T̃ (Bµ)

)
g̃Vµ

]
. (3.11)

We define the vector mass parameter MV and axial-vector mass parameter MA as

M2
V =

f2K g̃
2

2
, M2

A =
f21 g̃

2

2
. (3.12)

The mass entries of the Spin-1 resonances denoted with a hat are diagonal. The vectors have mass
MV coming from the kinetic K term and axial-vectors get mass MA from the d1µd

µ
1 term.

However, the two vector triplets v1µ, v2µ as well as the axial triplet aµ mix with the SM gauge
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3.2 Vector mass terms

bosons

L(mix)
mass =

(
W̃+

µ , a
+
µ , v

+
1µ, v

+
2µ

)
M2

C



W̃+
µ

a+µ

v+1µ

v+2µ


+

1

2

(
Bµ, W

3
µ , a

0
µ, v

0
1µ, v

0
2µ

)
M2

N



Bµ

W 3
µ

a0µ

v01µ

v02µ


. (3.13)

Using the vector state embeddings in eqs. (3.10) and (A.2) the charged non-diagonal mass matrix
reads

M2
C =



1
4g

2
(
f20 s

2
θ + 2

M2
V

g̃2
(2− s2θ)

)
g
rsθM

2
A√

2g̃
−gM2

V√
2g̃
−gM2

V cθ√
2g̃

g
rsθM

2
A√

2g̃
M2

A

−gM2
V√
2g̃

M2
V

−gM2
V cθ√
2g̃

M2
V


, (3.14)

and the neutral mass mixing is given by

M2
N =



1
4g

′2
(
f20 s

2
θ + 2

M2
V

g̃2
(2− s2θ)

)
1
4gg

′
(
2M2

V
g̃2
− f20

)
s2θ −g′ rsθM

2
A√

2g̃
−g′ M

2
V√
2g̃

g′
M2

V cθ√
2g̃

1
4gg

′
(
2M2

V
g̃2
− f20

)
s2θ

1
4g

2
(
f20 s

2
θ + 2

M2
V

g̃2
(2− s2θ)

)
g
rM2

Asθ√
2g̃

−gM2
V√
2g̃
−gM2

V cθ√
2g̃

−g′ rsθM
2
A√

2g̃
g
rM2

Asθ√
2g̃

M2
A

−g′ M
2
V√
2g̃

−gM2
V√
2g̃

M2
V

g′
M2

V cθ√
2g̃

−gM2
V cθ√
2g̃

M2
V


.

(3.15)

We define the orthogonal rotation matrices C and N to get the physical mass eigenstates denoted
with upper case letters



W̃+
µ

a+µ

v+1µ

v+2µ


= C



W+
µ

A+
µ

V +
1µ

V +
2µ


= CR+

µ ,



Bµ

W 3
µ

a0µ

v01µ

v02µ


= N



Aµ

Zµ

A0
µ

V 0
1µ

V 0
2µ


= NR0

µ , (3.16)

where we defined the mass eigenstate vectors R+
µ , R0

µ.
InM2

N we find an eigenstate with mass eigenvalue 0, identified as the photon γµ with eigenvector

γµ =
1/g√

1
g2

+ 1
g′2 + 2

g̃2

W 3
µ +

1/g′√
1
g2

+ 1
g′2 + 2

g̃2

Bµ +
√
2

1/g̃√
1
g2

+ 1
g′2 + 2

g̃2

v01µ . (3.17)
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3 Electroweak SU(5) / SO(5) Coset

Using this result to express the gauge interaction of photon to W+W−, the coupling constant is
given by

C211 + C221 + C231 + C241√
2/g̃2 + 1/g2 + 1/g′2

≡ e , (3.18)

where we used unitarity of the charged diagonalization matrix C and define the electric charge e as
1

e2
=

1

g2
+

1

g′2
+

2

g̃2
. (3.19)

The photon eigenvector can then be written in the following form

γµ =
e

g
W 3

µ +
e

g′
Bµ +

√
2
e

g̃
v0µ . (3.20)

Taking a closer look at the Lagrangian terms in eq. (3.11), the term proportional to r is the only
possible contribution for mixing of the SM bosons with Aµ, coming from the fact that the SM gauge
boson generators are not misaligned and have non-vanishing contributions in the coset ∼ X̃j . Since
they are induced from misalignment their contribution is suppressed by ∼ sθ.
Further, we chose the misalignment eq. (2.6) rotating only along the Higgs bidoublet. Therefore,
the only axial triplet which mixes is aµ of the axial bidoublet. The mass mixing matrices given
in [26], describing the coset SU(4)/Sp(4), are exactly the same up to sign differences coming from
different parameterization. This is not surprising, noting that SO(5) is isomorphic to Sp(4) and the
misalignment is along the same direction.

3.2.1 Approximate diagonalization

Although we will diagonalize the mass matrices numerically in chapter 4, an approximate diagonalization
remains useful for identifying the primary contributions of couplings and vector masses.
In the appendix of [26], solutions for the transformation matrices C, N are given in expansion for
g̃ ≫ 1 and θ → 0, which coincide with the ones we will use. For illustrative purposes, in the following
we give some intermediate results and explanation on how to derive them.
In the charged sector it is easy to see that one eigenstate V +

2 = v+2 − cθv
+
1 decouples. To partially

diagonalize the matrix we need to find the orthogonal complement W⊥ of the V +
2 eigenvector space,

which can be seen as a linear combination of the remaining 3 Eigenvectors. The transformation
matrix Ca is easily constructed and reads

Ca = (W⊥, V⃗ +
2 ) =



1 0 0 0

0 1 0 0

0 0 1√
1+cos2 θ

− cos θ√
1+cos2 θ

0 0 cos θ√
1+cos2 θ

1√
1+cos2 θ


, (3.21)

which reduces the charged mass matrix to an effective 3× 3 problem

C−1
a · M2

C · Ca =



g2M2
V (1+ω sin2(θ))

g̃2
gM2

Ar sin(θ)√
2g̃

−gM2
V

√
3+cos(2θ)

2g̃ 0

gM2
Ar sin(θ)√

2g̃
M2

A 0 0

−gM2
V

√
3+cos(2θ)

2g̃ 0 M2
V 0

0 0 0 M2
V


. (3.22)
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3.2 Vector mass terms

For the purpose of the expansion we assume that the parameters r, f1 and fK are of order one.
Further, we fix the ratio f0/fK and define the parameter ω = 1

2(f
2
0 /f

2
K−1). With those assumptions,

in the above result there is a mass hierarchy between the gauge boson W+ and the heavy resonances
A+, V +

1 , visible in form of orders of g/g̃. In sec. 3.3 we will change the set of parameters, but this
will not affect the validity of the following considerations, as the parameters r, f1, fK and f0 do not
depend on g/g̃.
Exploiting the mass hierarchy, it is possible to use the Seesaw mechanism as explained in [38]. The
idea is to get a unitary transformation Cb such that

CTb ·

ML MT
D

MD MR

 · Cb =
Mlight 0

0 Mheavy

 , (3.23)

with the following Ansatz [38]

Cb =

√1−BB† B

−B† √
1−B†B

 , (3.24)

where B is a 1× 2 matrix in this example. Vanishing off-diagonal entries lead us to a condition for B
which can be solved as a power series in g2/g̃2 up to arbitrary order. In [38], the general solution is
stated explicitly up to second order. Apply the first order solution to eq. (3.22), we get the following
Seesaw transformation

Cb =



1 + −3g2−g2 cos(2θ)−2g2r2 sin2(θ)
8g̃2

gr sin(θ)√
2g̃

−g
√

3+cos(2θ)

2g̃ 0

−gr sin(θ)√
2g̃

1− g2r2 sin2(θ)
4g̃2

g2r
√

3+cos(2θ) sin(θ)

4
√
2g̃2

0

g
√

3+cos(2θ)

2g̃

g2r
√

3+cos(2θ) sin(θ)

4
√
2g̃2

1− g2(3+cos(2θ))
8g̃2

0

0 0 0 1


. (3.25)

This yields a light eigenvalue for the W boson expanded in terms of g/g̃, using ξ =MA/MV

(CaCb)−1 · M2
C · CaCb =



1
4(f

2
0 − r2f21 )g2s2θ 0 0 0

0 M2
A(1 +

g2r2s2θ
2g̃2

) −g2M2
V r(ξ2+1)

√
3+c2θsθ

4
√
2g̃2

0

0 −g2M2
V r(ξ2+1)

√
3+c2θsθ

4
√
2g̃2

M2
V (1 +

g2(3+c2θ)
4g̃2

) 0

0 0 0 M2
V


.

(3.26)

The remaining non diagonal 2× 2 matrix can be diagonalized with a suitable ansatz in the limit
sin(θ)→ 0

Cc = 14 + sθ



0 0 0 0

0 0 −a 0

0 a 0 0

0 0 0 0


, a =

g2r(1 + ξ2)

2
√
2(g2 + g̃2(1− ξ2))

(3.27)
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Putting all steps together, we get the total transformation C = CaCbCc, explicitly stated in appendix C.
Including the second order Seesaw formula as well, it is possible to derive the mass eigenvalues

M2
W =

1

4
g2
(
f20 − f21 r2

)
sin2(θ)

(
1− 1

2

(
g

g̃

)2 ((
r2 − 1

)
sin2(θ) + 2

)
+O(g̃−4)

)
, (3.28)

M2
A+ =M2

A

(
1 +

1

2
r2
(
g

g̃

)2

sin2(θ) +O(g̃−4)

)
, (3.29)

M2
V +
1

=M2
V

(
1 +

1

2

(
g

g̃

)2 (
2− sin2(θ)

)
+O(g̃−4)

)
, (3.30)

M2
V +
2

=M2
V . (3.31)

The higher order corrections of M2
W can be absorbed in the definition of the “physical” coupling

constant

g2phys = g2

(
1− 1

2

(
g

g̃

)2 ((
r2 − 1

)
sin2(θ) + 2

)
+O(g̃−4)

)
, (3.32)

which simplifies to g2 in the SM limit g̃ →∞, where the heavy resonances decouple completely for
fixed f1, fK . In this limit we require the M2

W expression to match with the definition of the VEV,
v2 = (246GeV)2. Using eq. (2.8), we recall the definition of the pNGB decay constant in eq. (2.52)
derived from

v2 =
4

g2
M2

W
g̃→∞
=

(
f20 − f21 r2

)
s2θ (3.33)

= f2s2θ . (3.34)

In the neutral sector it is actually easier to start directly with a Seesaw approximation using the
hierarchy between the two light SM bosons and three heavy resonances. Therefore, we omit the
exact photon vector for this purpose to get

N−1
a · M2

N · Na =

M2
light 0

0 M2
heavy

 , (3.35)

M2
light =

(M2
V (1 + 2ω)−M2

Ar
2)s2θ

2g̃2

 g2 −gg′

−gg′ g′2

 . (3.36)

The upper 2× 2 block matrix M2
light contains the light gauge bosons and can be diagonalized easily,

while we can do another Seesaw in

M2
heavy −M2

A · 13 =


1
2M

2
A

(g′2+g2)r2 sin2(θ)
g̃2

(g′2−g2)(M2
A+M2

V )r sin(θ)

4g̃2
(g′2+g2)(M2

A+M2
V )r sin(2θ)

8g̃2

(g′2−g2)(M2
A+M2

V )r sin(θ)

4g̃2
−M2

A +
(g′2+g2+2g̃2)M2

V
2g̃2

(g′2−g2)M2
V cos(θ)

2g̃2

(g′2+g2)(M2
A+M2

V )r sin(2θ)

8g̃2
(g′2−g2)M2

V cos(θ)

2g̃2
−M2

A +
(2g̃2+(g′2+g2) cos2(θ))M2

V
2g̃2

 ,

(3.37)
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using the Seesaw transformation

Nb =



1 0 0 0 0

0 1 0 0 0

0 0 1
r(g′2−g2)(M2

A+M2
V )sθ

4g̃2(M2
V −M2

A)
r(g′2+g2)(M2

A+M2
V )s2θ

8g̃2(M2
V −M2

A)

0 0
r(g′2−g2)(M2

A+M2
V )sθ

4g̃2(M2
A−M2

V )
1 0

0 0
r(g′2+g2)(M2

A+M2
V )s2θ

8g̃2(M2
A−M2

V )
0 1


. (3.38)

In the end we get the following neutral mass eigenvalues, where we used θ → 0 to diagonalize the
2× 2 block of V 0

1 and V 0
2

M2
A = 0 , (3.39)

M2
Z =

1

4

(
g′2 + g2

)
v2

(
1 +

(
1− r2

) (
g′2 + g2

)
2 sin2(θ)− 2

(
g′4 + g4

)
2g̃2 (g′2 + g2)

+O(g̃−4)

)
, (3.40)

M2
A0 =M2

A

(
1 +

r2
(
g′2 + g2

)
sin2(θ)

2g̃2
+O(g̃−4)

)
, (3.41)

M2
V 0/S0 =M2

V

1 +

(
g′2 + g2

) (
±
√

2(−6g2g′2+g′4+g4) cos2(θ)
(g′2+g2)2

+ cos4(θ) + 1 + cos2(θ) + 1
)

4g̃2
+O(g̃−4)

 .

(3.42)

In fig. 3.1, the numerically calculated vector masses of V 0±
1µ , V 0

2µ are shown as contour lines in the
MV − g̃ plane. As the charged state V +

2µ is a linear combination only of v+1µ and v+2µ its mass does

1.5 2.0 2.5 3.0 3.5 4.0
Mass parameter MV [TeV]

1

2

3

4

5

6

7

8

9

10

g

V0
1

V0
2

V +
1

Mass
1.5 TeV
2 TeV

2.5 TeV
3 TeV

3.5 TeV
4 TeV

Mass
1.5 TeV
2 TeV

2.5 TeV
3 TeV

3.5 TeV
4 TeV

Figure 3.1: Mass contour lines in the MV − g̃ plane for fixed gV ππ = 0, f = 1TeV, ξ = 1.4. Shown
are the numerically calculated mass terms of the vector resonances V 0±

1µ and V 0
2µ.

not have further corrections. The neutral and charged states of the triplet V1µ behave very similar
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to each other with a mass difference of less than 0.1%. As can be seen in fig. 3.1, their masses get
very large corrections from MV at smaller g̃, which leads to a significant mass splitting between V1µ
and V2µ.

3.3 Model parameters

The effective Lagrangian eq. (2.38) was defined with five independent parameters f1, fK , r, θ, g̃. For
Phenomenology we wish to use a set of parameters which can be interpreted in a physical context.
We keep g̃ as independent parameter, and use eq. (3.12) to exchange fK and f1 in favor of the
vector mass parameter MV , respectively axial vector mass parameter MA. As stated before, these
mass parameters describe the mass terms of the non-mixing resonances, while the others get further
corrections. Further, instead of MA, the ratio ξ =MA/MV will be used, as it can be estimated in
holographic models of a composite Higgs. The parameter r can be replaced by the Vector-pNGB-
pNGB coupling constant, defined in eq. (2.54). Moreover, the pion decay constant f eq. (2.8) will
be fixed to 1TeV, which corresponds to θ ≈ 0.25, which matches to the current lower bounds [18].
Varying f has only very small effects on the decay channels of interest if we keep gV ππ constant.
But significantly larger values of f would lead to stronger fine tuning to get the measured Higgs
mass and is therefore not interesting. In summary, the input model parameters are

g̃ , MV , ξ , gV ππ , f . (3.43)

Using this set of parameters, one can express the remaining Lagrangian parameters as

f1 =

√
2

g̃
MV ξ , (3.44)

r =

√
1 +

f2gV ππ g̃

2M2
V

, (3.45)

f0 =
√
f2 + r2f21 =

√
f2 +

2M2
V ξ

2

g̃2
+
ξ2f2gV ππ

g̃
. (3.46)

Additionally, we use the SM values of the electric charge e and mass of the Z boson MZ as input
parameters to get an output expression for the coupling constants g, g′ derived from the conditions

1

e2
=

1

g2
+

1

g′2
+

2

g̃2
, det

(
M2

N −M2
Z15

)
= 0 . (3.47)

3.4 Couplings

In this section we will go into details about relevant vertices involving production and decay of the
Spin-1 resonances. This does also include additional terms not yet involved in eq. (2.38) like the
couplings to SM fermions explored in sec. 3.4.1. Note, that we will work in unitary gauge in the
following.
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3.4 Couplings

3.4.1 Standard Model Fermions

In the SM, we have couplings of gauge bosons to fermions via charged and neutral currents, which
makes it possible to have Drell-Yan single production of vector bosons. Through those terms,
couplings to heavy Spin-1 resonances are generated due to the mass mixing of Bµ and Wµ. With
PL,R = (1± γ5)/2, the fermion currents can be written as

LCC =
g√
2

∑
i,f

C1iR+
iµψ̄fγ

µPLψf ′ + h.c. , (3.48)

LNC =
∑
i,f

R0
iµψ̄fγ

µ
(
gfLiPL + gfRiPR

)
ψf (3.49)

=
∑
i,f

R0
iµψ̄fγ

µ
([
gT 3N2i + g′YLN1i

]
PL + g′YRN1iPR

)
ψf , (3.50)

with the weak isospin T 3 and hypercharge YL,R of the left-chiral doublets and right-chiral singlets.
Note that eq. (3.19) implies that

gphyssW = g′physcW = e = g · N21 = g′ · N11 . (3.51)

Further contributions can be expected from couplings of the baryonic top-partners to vector resonances
in the partial compositeness framework. For the top quark these couplings can be large compared to
the SM expression. Therefore, the total top coupling will be parameterized in a simplified manner
with generic coupling constants as

LPC = t̄V 0
µ γ

µ (gt,LPL + gt,RPR) t+ t̄V +
µ γ

µgtb,LPLb , (3.52)

for Vµ = Aµ, V1µ, V2µ. Some details about the structure and origin of these couplings in the color
sector are given in A.5 of [29].

3.4.2 Higgs & Gauge Bosons

Three-Vector vertices involving mass mixing resonances can be relevant for Di-Vector Drell-Yan
production. One interesting aspect are couplings of single produced resonances decaying into two
SM gauge bosons. In terms of gauge eigenstates the non-vanishing commutator structure for those
vertices reads

L ⊃ −i
(
gW̃+νW̃−

µ ∂
µW 3

ν +
g̃√
2

(
(a+νv−1µ + v+ν

1 a−µ )∂
µa0ν + (v+ν

1 v−2µ + v+ν
2 v−1µ)∂

µv02ν

)
+

g̃√
2

(
a+νa−µ + v+ν

1 v−1µ + v+ν
2 v−2µ

)
∂µv01ν

)
+ permutations . (3.53)

Replacing the gauge eigenstates with their mass mixing eigenvectors, one can easily derive a generic
expression in terms of C and N entries.
Decay channels into hZ and hW± do also emerge from the pNGB Lagrangian eq. (2.38). The
coupling of two mass eigenstate vectors to the Higgs h can be written as

L ⊃ cgauge
hR+R− · h

(
CR+

µ

)
i

(
C∗R−µ

)
j
+

1

2
cgauge
hR0R0 · h

(
NR0

µ

)
i

(
NR0µ

)
j

(3.54)

= chR+R− · hR+
iµR

−µ
j +

1

2
chR0R0 · hR0

iµR
0µ
j . (3.55)
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In the gauge eigenbasis the couplings read

1

2
cgauge
hR0R0 =
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(3.56)

cgauge
hR+R− =


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. (3.57)

3.4.3 Decays into two pNGBs

In the gauge eigenbasis, only the vectors Vµ can decay into two pNGBs given by the structure in
eq. (2.53), whereas the axials have only couplings to three scalars. Due to the mass mixing, there
are in principal also discalar decay channels for the axial triplet aµ. However, they are suppressed
by 1/g̃ and sθ.
The vector states, which mix with Wµ, Bµ, get corrections to gV ππ from the T̃ a projections of the
gauge bosons. Collecting the terms, the corresponding expression is

LWππ =
i

f2

[
f20 Tr

(
∂µΠ̃P

[
Π̃P , gT̃ (Wµ) + g′T̃ (Bµ)

])
− r2f21 Tr

(
∂µΠ̃P

[
Π̃P , gT̃ (Wµ) + g′T̃ (Bµ)

])
+
f2K
2

Tr
((
gT̃ (Wµ) + g′T̃ (Bµ)

) [
Π̃P , ∂µΠ̃P

])
−
f2Kr

2

2
Tr
((
gT̃ (Wµ) + g′T̃ (Bµ)

) [
Π̃P , ∂µΠ̃P

]) ]
= i
[ f2K
2f2

(1− r2)− 1
]
Tr
((
gT̃ (Wµ) + g′T̃ (Bµ)

) [
Π̃P , ∂µΠ̃P

])
= −igV ππ + 2g̃

2g̃
Tr
((
gT̃ (Wµ) + g′T̃ (Bµ)

) [
Π̃P , ∂µΠ̃P

])
. (3.58)

The total discalar decay constant of V1µ, V2µ can be derived through insertion of the mass eigenstates
eq. (3.16) into the gV ππ term eq. (2.53) and the above Lagrangian.
In fig. D.5, we show the relative decay widths of the pNGB channels among themselves for the
mass eigenstates V 0±

1 , V 0
2µ, which barely scale with g̃. Taking into account decay modes into the

pNGBs, we need to discuss their subsequent decay channels into SM particles. A possibility already
mentioned are the anomaly induced WZW terms.

3.4.4 WZW anomaly terms

As discussed in sec. 2.5, the axial combination of the two U(1) induces a so-called ABJ anomaly of
the axial current when we go from the classical to the quantized model. Therefore extra terms are
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needed, which were described in [39,40] and named Wess-Zumino-Witten (WZW) after the authors.
For some further details, see also section 1.3 of [41]. Those anomaly terms involve two orders of
Goldstones U and two orders of electroweak gauge bosons. Expanded to first order of pNGBs for
the SU(5)/SO(5) coset they read [37]

LWZW =
e2 dim(ψ)

48π2f

[
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3
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5
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]
. (3.59)

The combination of field strength tensor and its dual can couple only to CP-uneven scalars. Note
that there is no such term for η03. Further, the couplings of the Z boson (CP uneven) to η01η03 and
η05η

0
3 do exist in the Lagrangian. It follows, that η03 has to be a CP-even scalar, while all other

pNGBs are pseudoscalars.
The overall prefactor dim(ψ) is given by the dimension of the hypercolor irrep of ψ. In this work
we can keep in unspecified as we will be only interested in the branching ratios. Notice, that the
couplings to two W bosons are suppressed by s2θ and can be neglected for the neutral scalars, but
are the only decay channel for η++

5 . Calculation of the corresponding Feynman rules can be found
in appendix B.
The resulting two-body branching ratios for the neutral and single charged pNGBs are shown in
fig. 3.2 as function of the particles mass Mη. As we can see, the branching ratios remain stable over
a wide mass range. The three decay channels of the neutral pNGBs roughly have the same partial
widths, whereas the charged pNGBs decay primarily into W+γ with ≈ 78%.
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Figure 3.2: Branching ratios as function of the scalar mass Mη for η±3 , η±5 , η01 and η05 assuming only
WZW induced decay channels in the limit θ → 0 as described in sec. 3.4.4.

3.5 Three-body decay of η03

In this section we take a closer look on the decay channels of η03 into gauge bosons. As we have seen
in sec. 3.4.4, the CP-even η03 has no anomaly induced decay channel into two gauge bosons. But it
can decay into 3-body final states. Given the assumption that η3 is the lightest multiplet and there is
only a small mass splitting ∆ < 30GeV between η3 and the other multiplets, the neutral component
η03 will decay predominantly via an off-shell pNGB [36] as shown in the Feynman diagrams fig. 3.3.
For its calculation one needs the WZW terms and couplings of two scalars to Z or W , which are
stated in [36]. In their paper the scalar sector was studied without taking into account vector mixing,
which will modify the couplings to the SM gauge bosons. Nonetheless, those modifications can be
expected to be suppressed by small misalignment and large g̃.
In the following, we highlight a few key points on how to analytically calculate the 3-body decay
cross section, where we follow the ansatz in [42]. The five different decay channels are shown in
fig. 3.3, where we neglected the ∼ s2θ suppressed couplings η01,5 →W+W−.
The total width is then the sum of all partial widths Γ =

∑5
j=1 Γj , with

Γj =
S

2mη03

∫
|Mj |2(2π)4δ4(p1 − p2 − p3 − p4)

4∏
i=2

d4pi
(2π)3

Θ(p0i )δ(p
2
i −m2

i ) , (3.60)
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Figure 3.3: All relevant fermiophobic 3-body decay channels of the CP-even pNGB η03.

where S = 1
n! is the symmetry factor with n the number of identical final states.

The decay is mediated through an off-shell pNGB with finite width, so we use the Breit-Wigner
propagator of the form

i

q2η −M2
η + iΓηMη

. (3.61)

It’s handy to define the Mandelstam variables as

t̄ = (p3 + p4)
2 = (p1 − p2)2 ,

ū = (p2 + p4)
2 = (p1 − p3)2 ,

s̄ = (p2 + p3)
2 = (p1 − p4)2 ,

4∑
i=1

m2
i = t̄+ ū+ s̄ . (3.62)

Working in the rest frame of η03 and using the identities∫ (m1−m2)2

(m3+m4)2
dt̄ δ

(
t̄− (p1 − p2)2

)
= 1 ,∫ (m1−m4)2

(m2+m3)2
ds̄ δ

(
s̄− (p1 − p4)2

)
= 1 , (3.63)

the partial width from eq. (3.60) can be simplified to

Γj =
S

mη03

1

28π3

∫ (m1−m4)2

(m2+m3)2
ds̄

∫ t+(s̄)

t−(s̄)
dt̄|Mj |2(t̄, s̄)

π2

4m2
1

, (3.64)

with t± being the s̄ dependent integral bounds

t± =
1

2

(
m2

1 +m2
2 +m2

3 +m2
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− 1

2s̄

(
m2

1 −m2
4

) (
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2 −m2
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± 1

2s̄

√
λ(s̄,m2

2,m
2
3)
√
λ(s̄,m2

1,m
2
4) ,

(3.65)

and

λ(s̄, y, z) = s̄2 + y2 + z2 − 2s̄y − 2s̄z − 2yz . (3.66)
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The form of the Feynman rules and squared matrix elements |Mj |2 needed for the calculation are
derived in appendix B.
We will fix the scalar masses of the different multiplets to

M(η3) =Mη −∆ , M(η5) =Mη , M(η1) =Mη +∆ , (3.67)

such that the triplet is always the lightest. For small mass splitting ∆ = 2GeV, all pNGBs except
η03 will decay directly into two gauge bosons and the neutral triplet η03 has to decay via an off-shell
pNGB.
For Mη = 700GeV, we calculate a total width of 6.49 ·10−10GeV with branching ratios as in tab. 3.2.

channel W+W−γ W+W−Z Zγγ ZZγ ZZZ

BR [%] 4.3 70.7 1.5 1.0 22.5

Table 3.2: The branching ratios (BR) of three-body decays via WZW terms of η03 using Mη = 700GeV

and a mass splitting of ∆ = 2GeV. The total width is 6.49 · 10−10GeV.
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In this chapter, we want to make quantitative predictions about the parameter space in the coset
SU(5)/SO(5). To this end, we compare simulated collider events with current experimental data to
derive lower limits on the mass parameters and coupling constants. Ultimately, we aim to determine
the extent of the parameter space that remains viable, despite the absence of evidence for new heavy
resonances at the LHC so far.
In sec. 4.1, we focus on single production of vector resonances suited to derive bounds on the vector
mass parameter MV . Following, we will take a look at pair production of the double charged axial
resonance â++

5 in sec. 4.2 and constrain its mass MA.
For the simulation of signal events all relevant couplings were implemented as a FeynRules [43]
model. The model was built upon the existing SM implementation [44] version 1.4.7, therein the
fine structure constant was used at the Z pole, α = 1/127.9, the Z mass mZ = 91.1876GeV and
Fermi constant Gf = 1.16637 · 10−5GeV−2. FeynRules then generates Universal FeynRules Output
(UFO), a set of Python files readable to all common event generators.
Proton-proton collision events at

√
s = 13TeV are then simulated with the Monte Carlo generator

MadGraph5aMC@NLO [45] version 3.5.1, with parton densities from NNPDF 2.3 [46,47].
MadGraph5 does rely on the Narrow-Width-Approximation (NWA) approximation. Including a
proper treatment of large widths would require further work. In general, the validity for a narrow
width in this context is given up to ≈ 10% of its mass.
Further decay into detectable final states, showering and hadronization, is done with Pythia8 [48].
For several 2 → 2 scattering processes we are able to compare the calculated cross section of 104

events directly to upper limits of searches of the same signatures. Whereas for more complex final
states we simulate 105 events which are then analyzed by Recasting tools.
The term “Recasting” needs a little bit of an explanation. The collaborations ATLAS and CMS are
known for frequently publishing searches for BSM physics hidden in up-to-date LHC data. First,
the measured detector signatures have to be used to reconstruct the actual scattering events. To
this end, the so-called anti-kT algorithm is used to identify jets. Depending on the details of the
process interested in, the events will be filtered by some criteria (cuts) like number of jets or minimal
transverse momentum. Events which satisfy certain bounds are sorted into predefined signal regions
(SR) [49]. By comparing the observed number of events in one SR with the expected number from
SM plus BSM, one can derive limits on the masses and coupling constants of predicted new particles.
Within such a published search limits are usually set specifically for one BSM model. However,
the cuts and signal regions used for the analysis of LHC data can be implemented and applied to
simulated events of different models. In this way, searches are said to be recasted and limits can be
obtained for an arbitrary model [49]. Obviously, Recasting will yield only powerful results if the
signatures analyzed in a search match to the ones expected for processes in our model.
To have a wide variety of already recasted searches, we use MadAnalysis5 [50–53] and CheckMate2 [54],
which use the detector simulation Delphes3 [55] and the anti-kT algorithm [56] implemented in
FastJet [57, 58]. Furthermore, the generated events are compared to searches implemented in
Rivet [59] and evaluated with Contur [60, 61].
The exclusion of the calculated events at a given parameter point is then calculated with the CLs
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technique [62]. For the presentation, we choose to show exclusion lines at 95% CL, interpolated on
the scanned grid using Pythons matplotlib and the Scipy module interpolate.

4.1 Single Production
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Figure 4.1: Shown are the single production cross sections at
√
s = 13TeV of the heavy vector states

V 0±
1µ , V 0

2µ assuming a small gV ππ and SM-like couplings to the top quarks such that we can safely
assume a narrow width.

Single Production via Drell-Yan processes are in general expected to yield large cross sections. We
saw in sec. 3.4.1, that some resonances have couplings to the SM quarks and therefore they can
be single produced in proton-proton collisions. A CHM compatible with LHC bounds must have
a relatively small misalignment angle θ. That’s why we will take into account only those vectors
for which the mass mixing with the SM gauge bosons does not vanish as θ approaches zero. In this
limit, the eigenvectors expanded up to (g(′)/g̃)2 read

Bµ =
g
(
1− g′2

2g̃2

)
√
g2 + g′2

γµ +
g′
(
1− g′2

2g̃2

)
√
g2 + g′2

Zµ +
g′

g̃
V 0
2µ , (4.1)

W 3
µ =

g′
(
1− g2

2g̃2

)
√
g2 + g′2

γµ −
g
(
1− g2

2g̃2

)
√
g2 + g′2

Zµ −
g

g̃
V 0
1µ , (4.2)

W̃+
µ =

(
1− g2

2g̃2

)
W+

µ +
g

g̃
V +
1µ . (4.3)

This is an important result for the following analysis as we will focus only on single production of
V 0±
1µ and V 0

2µ because here we can expect the largest cross sections. The charged state V +
2µ does not

mix with the gauge bosons at all and the couplings of Aµ are suppressed by sθ.
Notice, that in the limit g(′)/g̃ → 0, we recall the SM expressions of photon and Z boson in terms of
the Weinberg angle.
In the following, we will not use the expanded diagonalization results but calculate for each parameter
point the matrices C, N numerically with the linalg module of numpy to have exact results also
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plane for different values of g̃.
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Figure 4.2: Width Γ over mass M for the vector resonance V 0
1µ in the scenario of partial compositeness

top coupling. The scalar masses are set as in eq. (4.7).

where g̃ ≈ 1.
As noted in sec. 3.3, there are 5 independent model parameters coming from the pNGB Lagrangian
eq. (2.38) from which we will fix the decay constant to the current lower limit f = 1TeV [18] and the
mass ratio ξ = 1.4. The latter is motivated by [63], where a holographic model of chiral symmetry
breaking is used to calculate several observables in CHM.
The greatest impact on the production of V 0±

1µ , V 0
2µ have the vector mass parameter MV and the

coupling constant g̃. In fig. 4.1 we show the production cross section in a zero width approximation
of the vector resonances. One can see, that the cross section of the charged resonance is an order of
magnitude larger compared to the neutral resonances.
Because MV and g̃ have the greatest impact on the production we are interested in exclusion bounds
in the MV − g̃ plane, while the subsequent decay depends heavily on the top coupling gt and pNGB
coupling gV ππ. To make that point more explicit, the decay channels can be divided into three
groups

V 0
1,2 → qq̄, l+l−, νν̄, V 0

1,2 → tt̄, V 0
1,2 → ππ, HZ, W+W− ,

V +
1 → qq̄′, l+ν, V +

1 → tb̄, V +
1 → ππ, W+Z, W+H , (4.4)

where q are all light quarks u, d, s, c, b and l, ν are the three lepton generations. The first group
of channels arises out of the SM fermion couplings in eq. (3.50) and scale primarily with 1/g̃, see
eq. (4.3). The second channel is described by the partial compositeness term eq. (3.52). It depends
on the coupling constant gt, which can not specified further. Therefore, we will look at two edge
cases: either large contributions from partial compositeness (PC) or only SM contributions as for
the lighter quarks and leptons. The two scenarios are denoted as

SM t : gt,L/R = g
(SM)
t,L/R , gtb,L = g

(SM)
tb,L ,

PC t : gt,L = gt,R = 1/
√
2 , gtb,L = 1 . (4.5)

The third group of decay channels was explored in secs. 3.4.2 and 3.4.3. The leading order behavior
for all three channels is determined by gV ππ, whereas only for gV ππ ≈ 0 corrections from mass mixing

39



4 Phenomenology

∝ 1/g̃ get important. We will study again only two different scenarios, divided into

weakπ : gV ππ = 0 ,

strongπ : gV ππ = 4 . (4.6)

Combining the top and pNGB edge cases, we have four independent scenarios which will be studied.
Exclusion bounds depend further on the subsequent decay of the scalars. Additionally to the WZW
terms in sec. 3.4.4 there might also be the option for couplings to top quarks. It depends on the
spurion representation in which the SM quarks are embedded if these couplings exist. These terms
were classified e.g. in [18] for the SU(5)/SO(5) coset. In particular, there might be also possibilities
in which all couplings vanish at tree level. If this is not the case, they can be expected to be
significantly larger than the anomaly terms. For this reason, we split the analysis of the pNGB
pair production into two scenarios: Either all scalars decay dominantly into third generation quarks
(fermiophilic) or all of them decay only via the WZW terms into gauge bosons (fermiophobic). The
two pNGB scenarios were already studied in [36], where bounds on the scalar masses were derived.
We will assume only a small mass splitting ∆ = 2GeV among the scalar multiplets and stick to the
parameterization as in eq. (3.67), which matches with the scenario “S-eq” in [36]. In the fermiophobic
model the scalar mass Mη is excluded below ≈ 660GeV, see fig. 8 of [36]. We fix the masses a bit
above to

M(η3) = 698GeV , M(η5) = 700GeV , M(η1) = 702GeV . (4.7)

In the fermiophilic model the current mass bounds are only around 500GeV [36]. For simplicity, as
the scalar mass (slightly) influences the branching ratio of all other channels, we will use the same
mass parameterization for comparison.
To justify, that we work in a regime of NWA for all scenarios, figs. 4.2, D.1 and D.2 show the total
width over vector mass as function of MV , g̃ and gV ππ for all three vector resonances in a scenario
of PC t. In the left hand plot one can clearly see that the decay into two pNGBs drops out if the
vector mass approaches 2Mη. As the vector mass depends also on g̃, this drop out shifts with smaller
g̃ to smaller values of MV . Admittedly, the total decay width of V 0±

1µ can exceed 10% for very small
values of g̃. That means, results above 1.5TeV and g̃ ≲ 2 have to be treated with caution.
The branching ratios in each scenario for the vector states V 0

1µ, V 0
2µ and V +

1µ are shown in figs. 4.3,
D.3 and D.4 for MV = 3TeV. In the scenarios with PC t or strong π, the channel with the strong
coupling is the dominant decay channel. For two strong couplings, called PC t, strong π, the sum of
all pNGB channels has roughly the same decay width as the partial compositeness top coupling. If
we choose at least one channel to be dominant, the SM fermion couplings are always suppressed by
g̃. Only for SM like top coupling and gV ππ = 0, the partial widths of all channels scale the same in
terms of g̃ and the branching ratios are nearly constant.
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Figure 4.3: Relevant branching ratios of V 0
1µ for MV = 3TeV, MA/MV = 1.4 and f = 1TeV in four

benchmark scenarios defined in eqs. (4.5) and (4.6). The scalar masses are set as in eq. (4.7). We
use here l = e, µ and the light quarks are u, d, s, c, b. The channel pNGB is the sum of all decays
into two pNGBs.

4.1.1 Decay channels

In the following, we derive bounds in the MV − g̃ plane for all four benchmark scenarios by analyzing
numerous decay channels sorted by their origin in eq. (4.4).

V +
1

q̄

q

νe

e+

V 0
1,2

q̄

q

e−, µ−

e+, µ+

Figure 4.4: Feynman diagrams for Drell-Yan production of charged and neutral vector resonance and
subsequent decay into leptons.
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Leptonic final states

We start with the final state e±ν, shown on the left in fig. 4.4, for which experimental upper limits
on the cross section σ95 can be found in [64], published by the ATLAS collaboration. A search for
a heavy charged vector resonance decaying into electron and neutrino is presented therein, using
the LHC dataset of proton-proton collisions with an integrated luminosity of 139 fb−1. To be able
to compare the data with our model, we calculate the cross section of p p→ V +

1µ → e+νe on a fine
grid in the MV − g̃ plane. For the event simulation in MadGraph5, we take into account off-shell
effects of the vector resonance within the NWA. The colormap in fig. 4.5 shows the cross section
as a function of g̃ and the actual vector mass. Note, that the latter differs clearly from the mass
parameter MV for small values of g̃, see also fig. 3.1. Next, we interpolate the simulated cross section
σ to the mass values given in the observed 95% CL upper limit σ95 and calculate the ratio σ/σ95 as
a function of vector mass and g̃. An exclusion line is then drawn where this ratio is interpolated
to be σ/σ95 = 1. In fig. 4.5 the results are shown for each of the four benchmark scenarios. As we
would expect from the branching ratios in fig. D.4, the strongest bounds in this process are given
for weak π and SM top coupling. In dependence of g̃, the excluded V +

1µ mass ranges up to 5.1TeV.
We fixed the maximal g̃ value for our scans to 10. In general, the perturbation theory approach
becomes invalid for coupling constants exceeding 4π ≈ 12.6. Nevertheless, reaching this limit is
unlikely to yield additional insights. For the other scenarios, the bounds depend more on g̃ because
not only the production coupling, but also the branching ratio into e±νe is affected. The results
all the other three scenarios are roughly in the same range, excluding vector masses up to 4.7TeV

at g̃ = 1, whereas masses around 1TeV are still possible at g̃ ≳ 5. We conclude the analysis by
presenting the exclusion lines as functions of the mass parameter MV in one combined figure, see
fig. 4.6. The combined presentation makes it easy to compare the different scenarios within one
channel. But it particularly enables one to compare the results of different processes more easily.
The benefits are more apparent when we study the final state e+e− + µ+µ−. In [65], a search for
high-mass dielectron and dimuon resonances is presented and upper limits on the cross section are
stated for different widths of the resonance in terms of a fiducial cross section. The search aims for a
single neutral vector resonance Z ′, whereas in our model we can have two neutral resonances V 0

1µ,
V 0
2µ in the s-channel, as in fig. 4.4.

The main concern is the large mass splitting of both states at smaller g̃ values. This makes it
challenging to compare a process involving V 0

1µ and V 0
2µ with upper limits on the cross section at a

given Z ′ mass. Therefore, we analyze the two neutral resonances individually. With this approach, we
neglect interference effects of the vector resonances, but checked that those are below 10% anyways.
Further, we were able to implement the same cuts used by the ATLAS Collaboration within
MadGraph5. Each muon (electron) candidate needs to have transverse momentum pT > 30GeV

(ET > 30GeV) and a pseudorapidity of |η| < 2.5. Also, there is a criteria for the dilepton mass to
satisfy mtrue

ll > Mx − 2Γx, where Mx, Γx are the mass and width of the s-channel vector resonance.
For comparison with simulated data, we used the upper limits for a fixed width of 6%. In general
the upper limits would be larger for larger widths, but overall it has only a minor influence on our
results.
The exclusion plots in terms of the actual vector masses can be found in appendix D.2, while we
present here only the final result in terms of the mass parameter MV , see fig. 4.7. In the MV − g̃
plane it is possible to show the bounds of both resonances, despite their mass splitting. As one can
see, the individual bounds from V 0

1µ and V 0
2µ do not differ much. Overall, in comparison with the

bounds of e±νe, the bounds of e+e− + µ+µ− are a bit weaker besides some exceptions at very small
or very large MV .
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Figure 4.5: Shown are the 95% CL exclusion lines derived from the channel p p→ V ±
1µ → e±ν for

MA/MV = 1.4, f = 1TeV. The area below the red line is excluded, which was calculated from the
upper limits on the cross section in [64]. The pNGB masses are defined as in eq. (4.7).

Aside from the leptons, the light quarks q correspond to the same group of decay channels. However,
we compared simulated cross section to [66] and found that bounds would be considerably weaker
compared to the leptonic channels.
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Figure 4.6: Combined presentation the results in fig. 4.5 as function of the mass parameter MV . The
benchmark scenarios were defined in eqs. (4.5) and (4.6).
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Figure 4.7: Shown are the 95% CL exclusion lines derived from the channel p p→ V 0
iµ → l+l− with

i = 1, 2 and l = e, µ for fixed MA/MV = 1.4, f = 1TeV. The area below the lines is excluded,
calculated from the upper limits on the cross section in [65]. The pNGB masses are defined as in
eq. (4.7) and the benchmark scenarios are defined in eqs. (4.5) and (4.6).

44



4.1 Single Production

Top quark final states

The second group of eq. (4.4) are the final states tb̄ and tt̄. For the scenario of a large partial
compositeness coupling and a rather weak pNGB channel, this would be the dominant decay mode.
We compared our model to the cross section limits in [67], where we explicitly use the bounds from
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Figure 4.8: Shown are the 95% CL exclusion lines derived from the channel pp → V +
1µ → tb̄ for

MA/MV = 1.4, f = 1TeV. The area below the lines is excluded, calculated from the upper limits on
the cross section in [67]. The pNGB masses are defined as in eq. (4.7) and the benchmark scenarios
are defined in eqs. (4.5) and (4.6).

fig. 13a for a heavy charged resonance coupling to the left handed fermions of the standard model.
The upper limits stem from the LHC data set with integrated luminosity of 139 fb−1 analyzed by
the ATLAS collaboration. The upper limits were derived for a resonance with narrow width ∼ 3%.
Available bounds stated for a larger width are substantially weaker. This means we will overestimate
bounds in scenarios with at least one strong coupling, because the actual widths are larger.
We show our results in form of a combined plot in the MV − g̃ plane in fig. 4.8. For the case of a
dominant decay V +

1µ → tb̄ we can exclude the model parameters up to MV ∼ 3.7TeV. For relatively
small masses of MV < 1TeV the SM background from W+ becomes stronger and it becomes more
difficult to detect BSM effects.
We did also compare our model against limits stated in [68] for tt̄ signatures. But derived bounds
are significantly weaker compared to the charged vector resonance.

pNGB pair production

The branching ratios into the pNGBs depend heavily on the value of gV ππ. Their subsequent decay
yields numerous final states, therefore Recasting is suited well to get exclusion values. In the following
we analyze the combination of the two neutral and the charged vector resonances. In our MadGraph5
setup, we neglect interference between the pNGBs as their width is much smaller than their mass.
This can be expected also for the fermiophilic model because the couplings scale as mt/f ∼ sθ [36]
For the fermiophobic model, the final states are made up of four to six gauge bosons. An example is

45



4 Phenomenology

V 0
1/2 η0

5

η0
3

q̄

q

γ

γ

Z

γ

Z

Figure 4.9: Single Production of neutral vector decaying into a pair of pNGBs in a fermiophobic
model.

shown in fig. 4.9. Here, we make use of the analytic results for the three-body decay of η03, see the
explicit branching ratios in tab. 3.2. It turns out, that the CheckMate2 recast of atlas_1802_03158
[69] yields the strongest bounds in the scanned parameter space. It searches for gauge-mediated
supersymmetry in final states containing at least two photons and some jets. Therefore, it is especially
sensitive for final states containing multiple photons and W or Z bosons, which decay hadronically.
There are numerous combinations of this kind possible for the process under study.
We choose our scanning grid to start at MV = 2 ·Mη = 1.4TeV and interpolate between the grid
points a 95% CL exclusion bound. The result for each scenario is shown in fig. 4.10. The figure does
show additional information like the exclusion of each point indicated by color and the signal region
(SR), in which the exclusion value was calculated. As we would expect, the bounds get weak if we
approach MV = 2 ·Mη, as the branching ratio into pNGBs is kinematically suppressed. This effect
does also depend on g̃, as the actual vector masses are significantly larger than MV at smaller g̃.
The total cross section, shown as dotted black lines, shows a further notability at small g̃ due to the
same reason. With very small g̃ the vector masses get so much larger than MV which then even
exceeds the effect of a larger production coupling to the light quarks. We unite these results in
fig. D.9, which can be compared easily to the channels analyzed before. In the fermiophilic model all
single charged and neutral pNGBs will decay into top-bottom or top-top pairs, as shown on the left
hand side of fig. 4.11. The double charged η++

5 can not decay into two SM quarks but undergoes a
three-body decay via an off-shell pNGB into W+ and two fermions

η++
5 →W+η+∗

3,5 →W+tb̄ . (4.8)

We found multiple recasts are sensible for these signatures. Within CheckMate2, we used the searches
atlas_2106_09609 [70] and atlas_2101_01629 [71]. The first paper deals with R-parity-violating
supersymmetry searching for final states containing many jets and at least one lepton. The latter
searches for gluino and squark pair production decaying into exactly one isolated lepton, further
jets and missing transverse momentum. In MadAnalysis5 the searches cms_sus_19_006 [72] and
cms_sus_16_033 [73] are giving the strongest bounds. Both search for supersymmetric particles
decaying into final states with multiple jets and large missing transverse momentum.
Detailed exclusion plots for each scenario can be found in appendix D.2, whereas we state here only
the combination in fig. 4.11. The exclusion bounds for Mη = 700GeV are shown as solid lines. For
comparison, we also show the results for the case of lighter pNGBs as dotted contours. The shapes
of the exclusion bounds for Mη = 700GeV seem to be a bit unusual, but this might be because of
the various different searches which contribute.

46



4.1 Single Production

1.5 2.0 2.5 3.0 3.5
MV parameter [TeV]

1

2

3

4

5

6

g

1.0e-04

1.0e-03

1.0e-02

Exclusion
> 95% CL
> 68% CL

68% CL
95% CL

Dominant SR
SRaaWL
SRaaSH

Dominant SR
SRaaWL
SRaaSH

10 4

10 3

10 2

10 1

 [p
b]

(a) gV ππ = 0, gt = 1

1.5 2.0 2.5 3.0 3.5 4.0
MV parameter [TeV]

1

2

3

4

5

6

7

8

9

10

g

1.0e-03

1.
0e

-0
3

1.0e-02

1.0e-01

Exclusion
> 95% CL
> 68% CL

68% CL
95% CL

Dominant SR
SRaaWL
SRaaSH

Dominant SR
SRaaWL
SRaaSH

10 4

10 3

10 2

10 1

 [p
b]

(b) gV ππ = 4, gt = 1

1.5 2.0 2.5 3.0 3.5
MV parameter [TeV]

1

2

3

4

5

6

g

1.0e-03

1.0e-02

Exclusion
> 95% CL
> 68% CL

68% CL
95% CL

Dominant SR
SRaaWL
SRaaSH

Dominant SR
SRaaWL
SRaaSH

10 4

10 3

10 2

10 1

 [p
b]

(c) gV ππ = 0, gt = g
(SM)
t

1.5 2.0 2.5 3.0 3.5 4.0
MV parameter [TeV]

1

2

3

4

5

6

7

8

9

10

g

1.0e-03

1.0e-02

1.0e-01

Exclusion
> 95% CL
> 68% CL

68% CL
95% CL

Dominant SR
SRaaWL
SRaaSH

Dominant SR
SRaaWL
SRaaSH

10 4

10 3

10 2

10 1

 [p
b]

(d) gV ππ = 4, gt = g
(SM)
t

Figure 4.10: Shown are the 95% CL exclusion lines derived from single produced vector resonances
decaying into a pair of pNGBs in a fermiophobic model with pNGB masses as in eq. (4.7). The
bounds were derived using the recasted search [69] for MA/MV = 1.4 and f = 1TeV. The cross
section is shown as a colormap in the background and we state the exclusion values and the dominant
signal region (SR) for each recasted grid point.
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Figure 4.11: The left hand side shows an example for single production of vector resonances decaying
into a pair of pNGBs in a fermiophilic model. On the right hand side the 95% CL exclusion lines
are shown, derived from single produced vector resonances decaying into a pair of pNGBs in a
fermiophilic model with pNGB masses as in eq. (4.7). The bounds of four scenarios, defined in
eqs. (4.5) and (4.6) are combined into one plot for MA/MV = 1.4 and f = 1TeV. More information
about the single results can be found in fig. D.10.
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4.1.2 Discussion

The results of all analyzed decay channels are summarized in fig. 4.12. All exclusion bounds of one
scenario are taken together and the interpolated envelope is drawn. The solid lines correspond to the
fermiophobic model, while the dashed lines show the fermiophilic model, both with Mη = 700GeV.
In the latter case, the bounds from vector decays into two pNGBs do not contribute to the envelopes
as they are weaker than the bounds from leptonic or top quark decay.
As we have briefly mentioned before, in a fermiophilic model the scalar masses are not bound to
Mη = 700GeV. However, for a proper treatment with lower Mη, one would have to run the direct
decays into leptons and top quarks again, as their branching ratios depend also on the scalar mass.
In particular, Mη determines where the decay into two pNGBs drops out of the branching ratios.
In the end it would effect the final results only slightly. In fig. 4.11, we present the bounds for
Mη = 700GeV and 550GeV for the decay channel into pNGBs. Also in this case, the scalar mass
does not affect the results that much.
Further, we rely heavily on the assumption MA/MV > 1, which is motivated by [63]. However, if we
drop this assumption, further decay channels of the type V → Aπ could be possible.
We want to emphasize, that neither of the presented scenarios will represent the true model, but
we can expect the model to be realized somewhere in between. The scenario of SM t and weak π
stands out as its bounds are a bit stronger, predicting MV ≳ 2.2− 4.4TeV if we bound g̃ < 10. But
this scenario has to be seen as a rather unrealistic realization of a CHM. The composite sector is a
strong coupling sector, so we would typically expect gV ππ to be larger than one. We can compare the
situation with QCD, where the ρ meson decays mainly into two pions with gρππ ≈ 6. Additionally,
to explain the quark mass hierarchy within CHM, contributions from partial compositeness to the
top quark coupling are strongly anticipated.
The predictions for the other scenarios do not differ that much especially at smaller g̃. We highlight,
that the exact value of gV ππ is not that important, as long as it is a strong coupling. Larger or a bit
smaller values than gV ππ = 4 would not change the branching ratios substantially. Its effect might
even be balanced by a different choice of gt.
As mentioned before, we actually overestimated the bounds for some channels as we compared our
model to experimental upper limits, which were derived for resonances with narrower widths. Despite
that, vector resonances around 2− 2.5TeV are still realizable for medium large g̃ in all scenarios
except for the case of SM t and weak π. But we want to highlight, that we can not even exclude
vector masses of around ∼ 1TeV in all scenarios, which is barely above the current scalar mass
bounds.
In conclusion, the lower multi-TeV range is still acceptable for vector resonances in the model under
study. Next-to-Leading-Order effects could strengthen or weaken the derived bounds, but will not
change the overall picture.
We can not compare our results directly to the bounds in [26] from 2016 for the electroweak
SU(4)/Sp(4) coset, as they used a different set of parameters. Further, they did not take into account
the possibility of a partial compositeness coupling to the top quarks. Nonetheless, it seems that our
bounds on MV are at least 1TeV stronger for small g̃, which might be due to the larger LHC data
set we had access to.
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Figure 4.12: The envelopes of multiple exclusion bounds derived from different decay channels
of single produced vector resonances presented in sec. 4.1.1. The dashed lines correspond to the
fermiophilic, the solid lines to fermiophobic pNGBs. In all cases the masses are defined as in eq. (4.7).
The scenarios were defined in eqs. (4.5) and (4.6) and we fixed MA/MV = 1.4 and f = 1TeV.

4.2 Pair Production of â++
5

The single production in sec. 4.1 is suitable for processes which are sensitive on the vector mass
parameter MV . In the following, we will study those kind of channels which yield independent
bounds on the axial-vector mass parameter MA.
As we have seen, the single production of the mass mixing axial vector A0,± is suppressed. Therefore,
we decided to look at pair production of the double charged axial â++

5 , because it is a unique
prediction of the SU(5)/SO(5) coset within the minimal models. There is no W+ → â++

5 W− vertex
allowed because 30 × 30 × 31 has no singlet. But the gauge couplings to photon and Z give rise
to Drell-Yan pair production pp → â−−

5 â++
5 . For production, the most relevant coupling is given

by the gauge interaction to the photon 2e, while the coupling to Z in general is a function of all
independent model parameters. Nevertheless, its value converges for larger g̃ very fast and we fixed
the coupling to 0.4.
Contrary to the previous scans in sec. 4.1 we will vary the masses of the pNGBs too, respecting a lower
limit of Mη ≳ 700GeV. Further, to get independent bounds on MA, we will loosen up the fixation of
the mass parameter ratio to ξ ≳ 1 with MV > Mη. In this setting the decay channels of an axial into
a vector resonance and scalar is kinematically still suppressed for lower multi-TeV axial masses MA

and we will neglect this possibility. Therefore, the double charged â++
5 can undergo only three-body

decays via η++
5 or η+3/5, where we will assume that the pNGBs decay into gauge bosons through the

WZW terms. This results in three different signatures W+W−W+W−γγ, W+W−W+W−Zγ and
W+W−W+W−ZZ. An example of the process is shown in fig. 4.13.
It turns out that the η+3 and η+5 channel differ only by cos θ in terms of expanded coupling constants.
Fixing the decay constant f , there are only two independent couplings with an arbitrary ratio
depending on MV , ξ, gV ππ, g̃. We decide to study two edge cases, dominance of the η++Z or η+3/5W

+

channel, and a 50% branching ratio for each. In this way we can derive exclusion limits in the plane
MA −Mη.
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Figure 4.13: Feynman diagram for pair production of the double charged axial â++
5 and subsequent

decay in a fermiophobic model.

4.2.1 Results

Starting with η++
5 Z dominance, the final state is always given by four W and two Z bosons. In this

case, it turns out that the MadAnalysis5 recast cms_exo_19_002 [74] is most sensible. They search
for BSM physics in final states with at least three charged leptons (electrons or muons). The results
of the recast are summarized in fig. 4.14. Shown is the cross section as heatmap background, the
dominant signal region (SR) and the exclusion value of each scan point.
As one can see, the bounds on MA lie around 860GeV, which is barely above the scalar mass bounds.
The mass bounds in the η+W+ channel are slightly stronger, stated in fig. 4.15. As it was shown in
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Figure 4.14: The exclusion bound in the MA −Mη plane for pair production of â++
5 in the scenario

of η++
5 Z dominance. Shown are also the grid points with dominant signal regions (SR) of the scan,

which were evaluated with cms_exo_19_002 [74] implemented in MadAnalysis5.
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Figure 4.15: The exclusion bound in the MA −Mη plane for pair production of â++
5 in the scenario

of η+W+ dominance. Shown are also the grid points with dominant signal regions (SR) of the scan,
which were evaluated with atlas_1802_03158 [69] implemented in CheckMATE.

fig. 3.2, η+3 and η+5 decay most likely to at least one photon, which is why we get in total ≈ 60% of
diphoton final state. For this type of signature, the search atlas_1802_03158 [69] implemented in
CheckMATE gives strong bounds, as we have seen already in sec. 4.1.1.
For the case of 50% branching ratio for both decay channels, the diphotonic final state does only

contribute with ≈ 15%, but mixed ZA signatures get more important. It turns out, that besides
atlas_1802_03158 two other searches are useful. The MadAnalysis5 recast cms_exo_20_004 [75],
which searches for energetic jets and large missing transverse momentum, and at smaller masses we
found that ATLAS_13_LL_GAMMA implemented in Contur using the search ATLAS_2019_I1764342 [76]
gives the strongest bounds. The latter analysis explicitly searches for a prompt photon in association
with a Z boson. The results are shown in fig. 4.16. The MadAnalysis5 recast cms_exo_20_004
combines multiple signal regions to state a significantly stronger bound. Consequently, it is nearly
impossible to retrace the impact of a single signal region to the final exclusion value. As the efficiency
of most signal regions is very small there are only a few events getting through the cuts, even with
105 events. The combination with a rather small SM background leads to larger fluctuations between
neighbored grid points.
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4.2 Pair Production of double charged Axial
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Figure 4.16: The exclusion bound in the MA −Mη plane for pair production of â++
5 in the scenario

of 50% branching ratio of η++
5 Z and η+W+. Shown are also the grid points and the corresponding

search which gave the strongest bounds.

4.2.2 Discussion

Compared to the bounds on MV in the previous section, the mass of the axial vectors is only barely
constrained by current LHC data. The results can be interpreted in two ways. If we trust the
holographic model calculations [63], the bound on axial mass parameter is simply MA ≳ 1.4 ·MV ,
predicting axial-vectors to be in the lower to mid multi-TeV range. On the other hand, if we do
not rely on this type of predictions, the parameter space along MA is wide open and allows for
MA ≳ 1TeV.
We motivated the analysis of the double charged vector, as it leads to special signatures involving
pairs of same charged W bosons. However, it turned out that the recastings with the strongest
bounds are not sensitive to this feature. Therefore, we should take into account pair production
involving other states of the axial multiplet, which will contribute to the same signal regions.
Furthermore, looking at the vertices ZW+â−3,5, ZZâ

0
1,3,5 W

+W−â01,3,5, there is a variety of different
diagrams producing a SM boson plus an axial resonance. As they lead to completely different final
states, it would be worth exploring their implications.
Aside from that, we did not yet discuss the scenario of fermiophilic scalars, where the pNGBs decay
mainly into top quarks. As we have seen in sec. 4.1, the bounds coming from the diphoton final
states are much stronger than from the quarks searches. In our pair production scenarios, the
strongest bounds do also come from the diphoton search and we expect, that in a fermiophilic model
the bounds on MA will stay below that. This means, we expect the bounds to be MA ≲ 1TeV at
scalar masses Mη ≳ 700GeV and therefore they would not add any new insights. Admittedly, the
scalar mass is not bound to 700GeV in a fermiophilic model, but we have seen so far that it doesn’t
have a great impact on the MA bounds. In conclusion, there are still some possibilities unexplored
for further analysis of the axial vector resonances. Nevertheless, our results indicate that with the
currently available recasting tools the bounds can be expected to be significantly weaker compared
to the bounds on the vector mass parameter MV from single production.
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5 Conclusion & Outlook

In this thesis we explored Composite Higgs Models with a focus on phenomenology of Spin-1
resonances emerging from the electroweak coset SU(5)/SO(5). The motivation for this study stems
from the limitations of the Standard Model to explain a dynamical origin of the electroweak symmetry
breaking.
We built the pNGB Lagrangian, including vector and axial vector resonances following CCWZ and
hidden symmetry formalism. Further, we discussed the decomposition of the vector representations
into the custodial group SU(2)L × SU(2)R and its diagonal SU(2)D and gave explicit embeddings in
the subgroup SO(5). Furthermore, we investigated the mass mixing among the Spin-1 resonances
with the SM gauge bosons. In that regard, approximated solutions to diagonalize the mass matrices
were given. These were then used to identify three vector resonances V 0±

1µ , V 0
2µ, which have non-

vanishing couplings to SM fermions even in the SM limit of zero misalignemnt θ → 0. This implies
that these states can be single produced in the s-channel, which is suited to derive bounds on their
mass parameter MV . Their decay channels were studied intensively, taking into account the pNGB
Lagrangian, SM fermions and contributions from partial compositeness.
The remainder of this thesis was dedicated to LHC phenomenology of the model. First, we studied
single production of the resonances mentioned. Therefore, four benchmark scenarios were defined
which fix the Vector-pNGB-pNGB coupling gV ππ and partial compositeness contributions to the
coupling of a top pair to vector resonances. Each benchmark scenario has a huge impact on the
branching ratio hierarchy, but we find that the final mass bounds do not differ much. Using
MadGraph5_aMC@NLO we were able to compare simulated events with experimental data from ATLAS
and CMS. Bounds were derived from numerous different decay channels in each benchmark scenario.
We stated the final result in fig. 4.12, where we combined multiple direct searches for lepton and
quark final states with recasting results used for more complex signatures. The resulting bounds are
very robust and do not depend much on the exact values chosen for the benchmark scenarios. We
highlight, that there is still the possibility for Spin-1 resonances in the lower multi-TeV range or
even around 1TeV in some scenarios for reasonable values of their coupling constant g̃.
Furthermore, we looked into pair production of the double charged axial resonance â++

5 , which is a
unique prediction for SU(5)/SO(5) within the set of minimal models. We derived bounds on the
axial mass parameter MA independently from our analysis before. With currently available recasting
tools, we got a bound of MA ≳ 860− 1100GeV. Investigation of interactions involving other states
of the axial multiplet might strengthen those bounds.
Also, taking into account Next-to-Leading-Order effects might have a significant impact on the cross
sections under study. However, our Leading-Order estimates of lower limits of MV and MA suggest
that there is still a wide-open parameter space for new discoveries. Future collider experiments, with
increased energy and luminosity, could provide potential discoveries or more stringent constraints of
the predicted resonances. In this thesis we have limited ourselves to the coset SU(5)/SO(5), which
is one of three minimal EW cosets besides SU(4)/Sp(4) and SU(4)× SU(4)/SU(4). As each coset
predicts a different BSM particle content, it would be interesting to explore the differences and
similarities with regard to the phenomenological considerations made in this work.
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5 Conclusion & Outlook

Last but not least we point out that these models contain an additional spin-1 resonance, not
considered here, stemming from the inclusion of the QCD sector and which mixes with the U(1)Y
boson. We expect that the impact of this state is weak if it is heavier than the other spin-1
resonances. However, there are scenarios in which this state could be lighter which deserve further
investigations.
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A Explicit Embeddings

The 14 axial vectors are embeded similiar to the pNGBs. We start with eq. (3.6) and transform
into SU(2)D using eq. (3.8) where η is replaced by âµ. The bidoublet components are parameterized
with a different phase compared to eq. (3.7) as

HA =

 ia+µ

1/
√
2(ŷ02µ − ia0µ)

 . (A.1)

With this convention the axial vector matrix reads

Ω(θ)† · Aµ · Ω(θ) =

1√
2



√
3ŷ01µ+

√
5â01µ−

√
10â05µ√

30

iâ+3µ+â+5µ√
2

−iâ+3µ+â+5µ√
2

√
2â++

5µ ia+µ
−iâ−3µ+â−5µ√

2

√
3y01µ−

√
5â01µ+

√
10â05µ√

30

i
√
3â03µ+â05µ+

√
2â01µ√

3

iâ+3µ−â+5µ√
2

−ia0µ+ŷ02µ√
2

iâ−3µ+â−5µ√
2

−i
√
3â03µ+â05µ+

√
2â01µ√

3

√
3ŷ01µ−

√
5â01µ+

√
10â05µ√

30

−iâ+3µ−â+5µ√
2

−ia0µ−ŷ02µ√
2

√
2â−−

5µ

−iâ−3µ−â−5µ√
2

iâ−3µ−â−5µ√
2

√
3y01µ+

√
5â01µ−

√
10â05µ√

30
−ia−µ

−ia−µ
ia0µ+ŷ02µ√

2

ia0µ−ŷ02µ√
2

ia+µ
−4√
10
ŷ01µ


.

(A.2)

The vector resonances Vµ can be decomposed to (3,1) ⊕ (1,3) ⊕ (2,2) of SU(2)D, which can be
parameterized as

Ω(θ)† · Vµ · Ω(θ) =

1√
2



1√
2
(t0Lµ + t0Rµ) t+Lµ t+Rµ 0 d++

µ

t−Lµ
−1√
2
(t0Lµ − t0Rµ) 0 t+Rµ d−+

µ

t−Rµ 0 1√
2
(t0Lµ − t0Rµ) t+Lµ (d−+

µ )†

0 t−Rµ t−Lµ
−1√
2
(t0Lµ + t0Rµ) −(d++

µ )†

(d++
µ )† (d−+

µ )† d−+
µ −d++

µ 0


, (A.3)

where tL/R denotes the SU(2)L/R triplet. The bidoublet dµ is decomposed further into (2,2)→ 3⊕1

of SU(2)D, parameterized as

d++
µ = −r̂+µ , d−+

µ =
1√
2
(r̂0µ − ix̂0µ) . (A.4)

From (3,1)⊕ (1,3) two linear combinations can be formed to be triplets of SU(2)D

t0±Lµ =
1√
2
(v0±1µ + v0±2µ ) , t0±Rµ =

1√
2
(v0±1µ − v

0±
2µ ) . (A.5)

Inserting the above transformations yields eq. (3.10).
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B Details of the pNGB decay channels

B.1 Two-body decays

Here, the 2-body decays of η±3 , η±5 , η01, η05 into EW bosons are calculated

Γi =
Sp0
8πm2

1

|Mi|2 , (B.1)

with p0 = 1
2m1

√
λ(m2

1,m
2
2,m

2
3), where λ was defined in eq. (3.66), m1 is the mass of the decaying

scalar and m2, m3 are the masses of the final vector bosons.
In order to derive the Feynman rules, the following sign convention for inward and outgoing
momentum

ηin ∼ e+ip·x , ηout ∼ e−ip·x , (B.2)

is used. Following, the structure of the Feynman rules of the WZW terms is worked out in detail for
η+AW−

iLWZW ⊃ iKη+

γW · η
+FµνW̃

−µν + h.c.

=
i

2
Kη+

γW · η
+ (∂µAν − ∂νAµ) ε

µνρδ
(
∂ρW

−
δ − ∂δW

−
ρ

)
+ h.c.

=
−i
2
Kη+

γW · η
+
(
pAµAν − pAν Aµ

)
εµνρδ

(
pWρ W

−
δ − p

W
δ W

−
ρ

)
+ h.c.

=
−i
2
Kη+

γW · η
+εµνρδ

(
pAµAνp

W
ρ W

−
δ − p

A
ν Aµp

W
ρ W

−
δ − p

A
µAνp

W
δ W

−
ρ + pAν Aµp

W
δ W

−
ρ

)
+ h.c.

= 2iKη+

γW ε
µνρδpAµ p

W
ν · η+AρW

−
δ + 2i

(
Kη+

γW

)∗
εµνρδpAµ p

W
ν · η−AρW

+
δ , (B.3)

→ 2iKη
V V · p2µp3νε

µνρδ , (B.4)

where the associated Kη
V V parameters can be read of from eq. (3.59)

K
η+5
γW =

e2 dim(ψ)

48π2fπ
· 3i
sW

, K
η+3
γW =

e2 dim(ψ)

48π2fπ
· −3cθ
sW

.

Using the above form of the Feynman rule, the spin-averaged product of the squared amplitude can
be calculated to

|M|2 =
∑
s2,s3

4
∣∣Kη

V V

∣∣2p2ρp3σερσµνϵ∗µ(s2)ϵ∗ν(s3)pχ2pλ3 ε αβ
χλ ϵα(s2)ϵβ(s3) , (B.5)

using the polarization completeness relation [77]∑
s

ϵ∗µ(s)ϵν(s) = −ηµν +
pµpν
m2

, (B.6)
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B Details of the pNGB decay channels

we get

|M|2 = −8
∣∣Kη

V V

∣∣2p2ρp3σpχ2pλ3 (δρχδσλ − δρλδσχ) = 8
∣∣Kη

V V

∣∣2 ((p2 · p3)2 −m2
2m

2
3

)
= 8
∣∣Kη

V V

∣∣2(1

4

(
m2

1 −m2
2 −m2

3

)2 −m2
2m

2
3

)
, (B.7)

where in the last step the rest frame of η was used.

B.2 Three-body decay

For the three-body decay channels we do need in addition the Feynman rules for ηηV vertices

iLηηV ⊃ i
(
Kη0η+

W

)
·W−µη0

←→
∂µη

+ + h.c.

= i
(
Kη0η+

W

)
·W−µ

(
η0∂µη

+ − η+∂µη0
)
+ h.c.

= Kη0η+

W ·W−µ
(
pη

+

µ η+η0 + pη
0

µ η
+η0

)
+ h.c.

= Kη0η+

W

(
pη

+

µ + pη
0

µ

)
·W−µη+η0 +

(
Kη0η+

W

)∗ (
pη

+

µ + pη
0

µ

)
·W+µη−η0 , (B.8)

→ Kηη
V · (q + p1)µ . (B.9)

Applying the Feynman rules for the t-channel q = p1 − p2, we get

−iMt = (2π)4δ (
∑

i pi) · 4K
η
V VK

ηη
V · p

τ
1ϵ

∗
τ (s2)

1

t̄−M2 + iΓM
p3ρp4σε

ρσµνϵ∗µ(s3)ϵ
∗
ν(s4) . (B.10)

For the expressions of u and s-channel one just has to rename indices.
The spin-average of two t-channels with different virtual scalars η, η′ is given by

Mtt(η, η
′) =

〈
MtM′

t
∗〉

=
∑

s2,s3,s4

16Kη
V2V3

K
η30η
V1

(Kη′

V2V3
)∗(K

η03η
′

V1
)∗

1

t̄−M2 + iΓM

1

t̄−M ′2 − iΓ′M ′

· pτ1p
γ
1ϵτ (s2)ϵ

∗
γ(s2)p3ρp4σp3δp4λε

δλαβερσµνϵα(s4)ϵ
∗
µ(s4)ϵβ(s3)ϵ

∗
ν(s3)

= 32Kη
V2V3

K
η30η
V1

(Kη′

V2V3
)∗(K

η03η
′

V1
)∗

1

t̄−M2 + iΓM

1

t̄−M ′2 − iΓ′M ′

·
(

1

4m2
2

(
m2

1 +m2
2 − t̄

)2 −m2
1

)
·
(
1

4

(
t̄−m4

3 −m2
4

)2 −m2
3m

2
4

)
. (B.11)

Note that the same result can be achieved for Muu, Mss by replacing t̄ with the corresponding
Mandelstam variable in the above expression.
Interference terms involving the combination of different momenta channel can be worked out in the
same way using

ϵρδτµϵχλβµ = −
(
δρχδ

δ
λδ

τ
β − δδχδ

ρ
λδ

τ
β + δδχδ

τ
λδ

ρ
β − δ

τ
χδ

δ
λδ

ρ
β + δτχδ

ρ
λδ

δ
β − δρχδτλδδβ

)
to get

Mtu = 2Kη
V2V3

K
η30η
V1

(Kη′

V2V3
)∗(K

η03η
′

V1
)∗ · 1

t̄−M2 + iΓM

1

ū−M ′2 − iΓ′M ′

·
[
(ū−m2

1 −m2
3) ·
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1 −m2
2)(t̄−m2

3 −m2
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1 −m2
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2 −m2
3)
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1 −m2
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2 −m2

4)
)

− 2m2
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2 −m2
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3 −m2
4)− 2m2
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1 −m2

4)(t̄−m2
1 −m2

2)

+ 4m2
1m

2
3(ū−m2

2 −m2
4)
]
. (B.12)
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B.2 Three-body decay

One can use these results to express the squared matrix elements |M|2 in terms of only two
independent functions Mxx, Mxy. Starting with the channels η03 →W+ +W− + γ/Z, one gets∣∣M1/2

∣∣2 = 〈∣∣Mt(η
+
3 ) +Mu(η

−
3 ) +Mt(η

+
5 ) +Mu(η

−
5 )
∣∣2〉 (B.13)

=Mtt(η
+
3 , η

+
3 ) +Muu(η

−
3 , η

−
3 ) +Mtt(η

+
5 , η

+
5 ) +Muu(η

−
5 , η

−
5 )

+ 2Re
[
Mtu(η

+
3 , η

−
3 ) +Mtt(η

+
3 , η

+
5 ) +Mtu(η

+
3 , η

−
5 ) +Mtu(η

−
3 , η

+
5 )

+Muu(η
−
3 , η

−
5 ) +Mtu(η

+
5 , η

−
5 )
]
.

Following the expressions for η03 → Z + γ + γ

|M3|2 =
〈∣∣2Mt(η

0
1) + 2Mt(η

0
5)
∣∣2〉 (B.14)

= 4
(
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0
1, η

0
1) + 2Re

[
Mtt(η

0
1, η

0
5)
]
+Mtt(η

0
5, η

0
5)
)
,

and η03 → Z + Z + γ

|M3|2 =
〈∣∣Mt

(
η01
)
+Mt

(
η05
)
+Mu

(
η01
)
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(
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.

The last channel η03 → Z + Z + Z involves a lot of permutations and comes with symmetry factor
S = 1

3!

|M5|2 =
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C Approximate Diagonalization of Mass
Matrices

The expressions for the components of the transformation C = CaCbCc were already given in the
main text, see sec. 3.2.1. Here we state the resulting total transformation in the same basis as in
eq. (3.16)

C =



1− g2(1+c2θ+r2s2θ)

4g̃2
grsθ√
2g̃

g
√
3+c2θ
2g̃ 0

−grsθ√
2g̃

1− g2r2s2θ
4g̃2

−g2M2
Ar
√

1+c2θsθ
2g̃2(M2

A−M2
V )

0

g√
2g̃

g2M2
V rsθ

2g̃2(M2
V −M2

A)
1√
1+c2θ

(−1 + g2(3+c2θ)
8g̃2

) cθ√
1+c2θ

gcθ√
2g̃

g2M2
V rs2θ

4g̃2(M2
V −M2

A)
cθ√
1+c2θ

(−1 + g2(3+c2θ)
8g̃2

) −1√
1+c2θ


. (C.1)

The neutral eigenvectors up to 1/g̃2 and s2θ are given by

Bµ = N1i =


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√
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D Additional material for Single Production
Phenomenology

Here we state additional branching ratios and exclusion plots didn’t made it into the main text.

D.1 Width & Branching ratios
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plane for different values of g̃.
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Figure D.1: Width Γ over mass M for the vector resonance V 0
2µ in the scenario of partial compositeness

top coupling. The scalar masses are set as in eq. (4.7).
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Figure D.2: Width Γ over mass M for the vector resonance V +
1µ in the scenario of partial compositeness

top coupling. The scalar masses are set as in eq. (4.7).
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Figure D.3: Relevant branching ratios of V 0
2µ for MV = 3TeV, MA/MV = 1.4 and f = 1TeV in four

benchmark scenarios defined in eqs. (4.5) and (4.6). The scalar masses are set as in eq. (4.7). We
use here l = e, µ and the light quarks are u, d, s, c, b. The channel pNGB represents the sum of all
decays into two pNGBs.
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Figure D.4: Relevant branching ratios of V +
1µ for MV = 3TeV, MA/MV = 1.4 and f = 1TeV in four

benchmark scenarios defined in eqs. (4.5) and (4.6). The scalar masses are set as in eq. (4.7). The
light quarks are u, d, s, c, b and the pNGB channel represents the sum of all decays into two pNGBs.
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Figure D.5: Shown are the relative widths of all decays into two pNGBs for gV ππ = 4 and MV = 3TeV,
which remain very stable while varying g̃.
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D.2 Mass bounds

In fig. D.6 the 95% exclusion lines are shown derived from the channel V 0
1µ → l+l− with l = e, µ,

while fig. D.7 shows the bound derived from V 0
2µ → l+l−. They were combined as function of the

mass parameter MV in fig. 4.7. fig. D.8 shows the bounds from V +
1µ → tb̄.

In fig. D.9, we combine the results from fig. 4.10 into one plot, which can be compared easily to
bounds from other channels.
The recasting results for the decay into two pNGBs in a fermiophilic model with Mη = 700GeV are
shown in fig. D.10, where we also show the cross section as colormap in the background and the
search which stated the strongest bounds are indicated for each grid point.
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Figure D.6: Shown are the 95% CL exclusion lines derived from the channel p p→ V 0
1µ → l+l− with

l = e, µ. The area below the red line is excluded, which was calculated from the upper limits on
the cross section in [65]. The pNGB masses are defined as in eq. (4.7) and we fixed MA/MV = 1.4,
f = 1TeV.

69



D Additional material for Single Production Phenomenology

1.0e-07

1.0e-06
1.0e-05

1.0e-04

1.0e-03
1.0e-02

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Mass of S0 [TeV]

1

2

3

4

5

6

7

8

9

10

g

Observed 95% upper limitObserved 95% upper limit

10 6

10 5

10 4

10 3

10 2

10 1

 [p
b]

(a) gV ππ = 0, gt = 1

1.0e-07

1.0e-06

1.0e-05
1.0e-04

1.0e-031.0e-02

0.5 1.0 1.5 2.0 2.5
Mass of S0 [TeV]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

g

Observed 95% upper limitObserved 95% upper limit

10 6

10 5

10 4

10 3

10 2

10 1

 [p
b]

(b) gV ππ = 4, gt = 1

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Mass of S0 [TeV]

1

2

3

4

5

6

7

8

9

10

g

Observed 95% upper limitObserved 95% upper limit

10 6

10 5

10 4

10 3

10 2

10 1

 [p
b]

(c) gV ππ = 0, gt = g
(SM)
t

1.0e-07

1.0e-06

1.0e-05

1.0e-041.0e-03

1.0e-02

0.5 1.0 1.5 2.0 2.5
Mass of S0 [TeV]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

g

Observed 95% upper limitObserved 95% upper limit

10 6

10 5

10 4

10 3

10 2

10 1

 [p
b]

(d) gV ππ = 4, gt = g
(SM)
t

Figure D.7: Shown are the 95% CL exclusion lines derived from the channel p p→ V 0
2µ → l+l− with

l = e, µ. The area below the red line is excluded, which was calculated from the upper limits on
the cross section in [65]. The pNGB masses are defined as in eq. (4.7) and we fixed MA/MV = 1.4,
f = 1TeV.
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Figure D.8: Shown are the 95% CL exclusion lines derived from the channel p p→ V +
1µ → tb̄. The

area below the red line is excluded, which was calculated from the upper limits on the cross section
in [67]. The pNGB masses are defined as in eq. (4.7) and we fixed MA/MV = 1.4, f = 1TeV.
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Figure D.9: Combined presentation of exclusion lines in fig. 4.10. The bounds were derived from
single produced vector resonances decaying into a pair of pNGBs in a fermiophobic model. The
benchmark scenarios were defined in eqs. (4.5) and (4.6).
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Figure D.10: Shown are the 95% CL exclusion lines derived from single produced vector resonances
decaying into a pair of pNGBs in a fermiophilic model with pNGB masses as in eq. (4.7), MA/MV =

1.4 and f = 1TeV. The bounds were derived using the recasted searches [70–73], where the area
below the red line is excluded. Further, we show the cross section as colormap in the background
and state the search which gave the strongest exclusion at each grid point.
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List of Abbreviations

CHM Composite Higgs models

pNGB pseudo Nambu–Goldstone Boson

SM Standard Model

EW electroweak

irrep irreducible representation

VEV vacuum expectation value

CCWZ Callan-Coleman-Wess-Zumino

DOF degrees of freedom

WZW Wess-Zumino-Witten

QCD Quantum Chromo Dynamics

BSM Beyond the Standard Model

ABJ Adler-Bell-Jackiw

NWA Narrow-Width-Approximation

IR Infrared

UV Ultraviolet
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