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Abstract

This thesis is dedicated to construct a non-abelian holographic dynamical minimal composite

Higgs model. We first build a non-abelian bottom-up AdS/YM model that can explain the QCD

meson spectrum well. The model is made non-abelian by considering non-abelian DBI action in

the top-down model. We then change the dual theory from the QCD to the minimal composite

Higgs model U(4)/Sp(4). By adding a second explicit U(4) → Sp(4) breaking through the NJL

interaction at the boundary, we managed to construct a composite Higgs phase and a technicolor

phase in this model. The transition between the two phases is also realized, which is controlled

by the NJL coupling. This thesis is based on the works [1, 2].
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Zusammenfassung

Diese Arbeit konstruiert ein nicht-abelsches holographisches dynamisches minimales Composite-

Higgs-Modell. Wir erstellen zunächst ein nicht-abelsches Bottom-up-AdS/YM-Modell, das das

QCD-Mesonenspektrum gut erklären kann. Das Modell ist nicht-abelsch, da die nicht-abelsche

DBI-Wirkung im Top-Down-Modell berücksichtigt wird. Anschließend ändern wir die duale

Theorie von der QCD auf das minimale Composite-Higgs-Modell U(4)/Sp(4). Durch das

Hinzufügen einer zweiten expliziten Brechung U(4) → Sp(4), das die NJL-Wechselwirkung

an der Grenze durchbricht, konstruierten wir in diesem Modell eine Composite-Higgs-Phase

und eine Technicolor-Phase. Auch der Übergang zwischen den beiden Phasen wird realisiert,

welcher durch die NJL-Kopplung gesteuert wird. Diese Arbeit basiert auf den Arbeiten [1, 2].
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Chapter 1

Introduction

The discovery of the Higgs boson at the LHC in 2012 [3, 4] found the last missing piece of the

standard model (SM). Even though the standard model has provided an elegant mathematical

tool that could explain most of the experimental data, it is known that the standard model

alone is not the end of the story. The SM fails to provide a candidate(s) for the dark matter

(DM). The neutrinos are predicted to be massless in the SM, where it has been found and

verified by the experiments [5, 6] that the neutrinos are massive. The quarks’ flavor hierarchy is

also not explained, where it is unnatural that the lightest quark is only a couple of MeV where

the heaviest one is 173 GeV [7]. Not to mention that the standard model only describes three

fundamental forces, where the gravitational interaction that we see and feel in everyday life is

not contained.

The most infamous problem the SM fails to explain in particle physics is the hierarchy problem.

The electroweak symmetry breaking (EWSB) is well explained by the then discovered Higgs.

But the Higgs model is more of a parametrization than a defining theory of the EWSB, since

the origin that generates the EWSB dynamically is still unknown. Aside from that, being an

elementary particle, the Higgs boson is not protected by any symmetry. The consequence follows

is that the Higgs mass receives a radiative correction that is a function of the energy scale. This

is then unbounded if the energy is set arbitrarily high. How would the EWSB scale be stable

comparing to much larger scales is not explained.

There has been attempts to resolve the hierarchy problem. The proposals usually modify the

symmetry that the theory describes. The most famous attempt in the past decades is the

supersymmetry (SUSY), which includes symmetry between the bosons and fermions. Due to

9



this extra symmetry, the cancellation of the contributions from the fermions and the bosons

protects the Higgs mass and makes it naturally light. Even though it’s a mathematically elegant

theory, the searches for SUSY particles at the colliders haven’t been succeeded. This sets bounds

on the SUSY particles’ masses higher and higher, making SUSY gradually less attractive for

physicists in the past decade.

Aside from the SUSY, all the other attempts assume certain compositeness of the Higgs boson

[8], whether it’s QCD (quantum chromodynamics) pion inspired composite state or in the sense

of string theory. The extension that is analog to the QCD pion is the technicolor (TC) model [9,

10]. It considers EWSB to be a scaled-up QCD theory which is a simple and elegant extension

of the SM. However, the drawback of the TC is the absence of the scalar field, the Higgs. The

technicolor models also suffer from producing FCNC (flavor changing neutral currents) processes

that are not observed in the experiment. An economical way to resolve these problems from both

the Higgs model and the TC is to combine them together. The Higgs boson in this frame is no

more elementary, but a composite state made of fermions from an extended strongly interacting

sector. This is the so-called composite Higgs (CH) model, which is the main topic of this thesis.

The composite Higgs models, also the technicolor models, utilize an extra strongly coupled

sector. This sector introduces extra fermions, the so-called hyperquarks, that are charged under

certain symmetry group assumed in this sector. Given that the new particles are strongly

coupled, for low-energy effective theory the perturbative calculations are not viable. An old

alternative theory of the strongly interacting theory — the string theory — provides answers

to this problem.

String theory was born in the 1960s as a theory to explain the strong interactions in particle

physics where the strings are initially postulated as “flux tubes“. Later as the QCD theory was

developed and became the theory for strong interactions in particle physics, the study on string

theory in explaining strong dynamics cooled down for about two decades. Physicists’ interests

on this subject boost again after the famous paper by Maldacena [11] in 1998. In that paper,

dualities between strongly (conformal field theory, CFT) and weakly coupled theory (gravity) are

postulated, by identifying the theories on the two limits of the D3-branes. The most intensively

studied version of the duality is the AdS5/CFT4, which states the IIB supergravity living in the

AdS5×S5 space is dual to the N = 4 super Yang-Mills theory (SYM), i.e. a four-dimensional

CFT, living on the boundary of the AdS5, which is a flat 4D Minkowski spacetime. Other

variants of the AdS/CFT (anti de-Sitter, AdS) correspondence are Ad7/CFT6, Ad4/CFT3,

Ad3/CFT2 and Ad2/CFT1 [11, 12].
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This soon stimulated researches in various fields. The AdS/CFT correspondence is generalized

to the gauge/gravity duality, where the dual field theory becomes a general gauge theory, which is

not necessarily conformal. It is widely applied in condensed matter physics which later becomes

the AdS/CMT (condensed matter theory) correspondence. This is a very active research field,

where such correspondence are used in studying high-temperature superconductors [13, 14],

strange metal [15], superfluid [16] etc., see also [17, 18]. It also leads to the birth of the SYK

(Sachdev-Ye-Kitaev) model [19, 20], which is involved in studying non-Fermi liquid [21] and

even realizing traversable wormhole on tabletop [22, 23].

One of the active research field of the AdS/CFT correspondence, or more precisely the gauge/gravity

duality, is the particle physics. It brings the string theory back to the origin, i.e. to explain

the strongly coupled sector of the SM, and generally a strongly coupled sector in beyond stan-

dard model (BSM) models. Initially the precise form of the duality is used in model building,

i.e. the dual field theory is conformal. The open string modes living in the world volume of

coincident N Dp-branes transform in the adjoint representation of the U(N) gauge theory. To

implement matter fields in the fundamental representation, extra Dq-branes are needed [24].

The open strings between the Dp- and Dq-branes transform in the fundamental representation

of the U(N) gauge group. Adding just the fundamental matter is not enough. To reproduce

the special features — confinement and chiral symmetry breaking, different geometries are con-

structed on the gravity side, for example [25–28], and more references see section 3.4. Such

models involves the D3-stack/D7-probe set up based on the IIB superstring theory [24, 29–31]

and the Sakai-Sugimoto model (D4-D8-D8) [32–38] based on the IIA superstring theory. These

models originate from supersymmetry theories, therefore contain more states than the QCD.

Another approach is from the bottom-up. The so-called AdS/QCD model was first proposed

in [39]. This model takes the common property of the top-down models, constructed the dual

gravity theory of QCD on the AdS5. It assumes a chiral symmetry that is spontaneously broken,

the vector fields in the bulk are implemented in a hidden-local symmetry way [40], such that

they are dynamical fields in the bulk and dual to the vector mesons in the QCD. This model

takes only three free parameters, but is able to make a rough prediction of the meson spectrum

which makes it a powerful alternative of lattice QCD.

The bottom-up model is much easier to apply on model building, since one no more needs to

consider complicated brane architectures to get the dual gauge theory right. The cost is that

the result is only an approximation. For AdS/QCD model, the error is usually at 10-15% level

[39], which is already a good estimation. Thus bottom-up models are actively used in BSM
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model building, such as technicolor [41–47], composite Higgs [48–53], neutrino physics [54, 55],

dark matter and dark energy [56], see also [57] and references therein.

This thesis aims to construct a holographic composite Higgs model, which contains two phases

— the composite Higgs phase and the technicolor phase — and the transition between the two.

In that, we first constructed a non-abelian AdS/YM (Yang-Mills) theory, non-abelian in the

sense that the flavor symmetry of the dual field theory is made explicitly by considering the

non-abelian Dirac-Born-Infeld action (DBI action) and imposing different boundary conditions

for the flavor branes in the gravity dual. As a first test, we compared the meson spectrum

predicted by our model with the QCD data, which shows a good agreement. The same technique

is them applied to the construction of the holographic composite Higgs model mentioned above.

Both of the two phases and their transition is realized. The symmetry breaking pattern is

U(4) → Sp(4) → SU(2)× SU(2). This involves two different U(4) → Sp(4) breakings, the first

one comes with the holographic model, realized in the similar way as the AdS/QCD. The second

is introduced by inserting the NJL (Nambu-Jona-Lasino) interactions at the boundary. After a

unitary transformation, such a construction finds itself to be simply a non-abelian holographic

model that we constructed in the first place. We computed the bound states’ spectra and decay

constants. The results show that the transition between the two phases are highly fine-tuned.

The structure of this thesis is organized as follows. It contains two parts. The first part is the

theory part. In this part we review the necessary theory backgrounds that will be used in the

research part. Our research involves mainly two theories — the composite Higgs models and

the gauge/gravity duality. Both of them cover a vast range of topics. We will only review the

basics and focus more on the related topics that are relevant to our research. The fundamentals

of the composite Higgs models are reviewed in chapter 2, especially we review the 4D field

theory composite Higgs model that we made holographic in the research part in section 2.3.

Other holographic composite Higgs models are also briefly discussed. In chapter 3 we review

the AdS/CFT correspondence and more generally gauge/gravity duality when applied to the

particle physics. We discuss both the abelian top-down and bottom-up holographic models and

set our conventions for later parts. Especially we discuss realizing confinement, chiral symmetry

breaking and inserting NJL interaction terms on the boundary in the holographic models in this

chapter.

The second part is the research part. It contains also two chapters. In chapter 4 we introduce

our work that published in [1]. In that we first reviewed a non-abelian top-down D3/D7 model,

and constructed a bottom-up model along this line and tested it against the QCD data. We
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developed the numerical tool that could cope with the coupled equations of motion that appear

frequently in the non-abelian holographic models. We show at the end of this part that we have

constructed a non-abelian dynamical AdS/YM model. In chapter 5 we apply this AdS/YM

model to a U(4) → Sp(4) global symmetry breaking composite Higgs model that we reviewed

in chapter 2. This chapter introduces the work that we published in [2]. We first look at

the degenerate case, which corresponds to a U(4) → Sp(4) composite Higgs model. Then we

look into the case where the flavors are no more degenerated. It’s role becomes clear when we

add a second U(4) → Sp(4) symmetry breaking through inserting the NJL interactions at the

boundary. In the end, we are able to realize a holographic model which manifests a transition

between a composite Higgs and a technicolor model. In chapter 6 we make our conclusions and

discuss the outlook of our work.

We put the supplementary materials in the appendices. In appendix A we show explicitly

the calculations in the non-abelian top-down model. Similar calculations are performed in the

bottom-up model and automatized with Mathematica. Therefore we only show the calculation

once and list the equations directly in the later parts. In appendix B we review the imple-

mentation of the dynamical running introduced in section 3.6. In appendix C we derive the

equations of motion for a general parametrization in the non-abelian bottom-up model, to moti-

vate the parametrizaiton we adopted in the main text. The resulting equations of motion using

the adopted parametrization is shown in appendix D and appendix E for two- and three-flavor

QCD, respectively. In appendix F we work out explicitly the relation between the ∆m2 and

A that show up in the holographic composite Higgs model we constructed in chapter 5. In

appendix G we list the equations of motion when adding the NJL interaction in the holographic

composite Higgs model.
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Chapter 2

Composite Higgs Models

In this chapter we review some fundamentals of the composite Higgs models. Topics like CCWZ

construction [58, 59] that is important in building a CH model from possible symmetry breaking

patterns, possible modifications to resolve certain model dependent problems, current bounds

on specific BSM particles will not be discussed. We will start from its origin in the technicolor,

introduce the basic idea of CH in section 2.1, and move to a minimal composite Higgs model

in section 2.2 to see how the physical quantities are calculated. Then we will introduce another

minimal and viable composite Higgs model in section 2.3 that is made holographic in the later

research part in chapter 5. At the end of this chapter, we will mention briefly the holographic

extensions of the composite Higgs models in section 2.4. Some of the content in section is based

on [60–62]. Further reviews see also [63].

2.1 General Idea

The Higgs model is an economical way to explain the EWSB by just adding a weakly interaction

scalar singlet under the EW (electroweak) gauge group. At leading order the Higgs is a light

scalar, this makes the theory calculable and compatible with the electroweak precision test.

However, it’s mass is not protected by any symmetry, in that the Higgs boson’s potential is

sensitive to BSM physics. This hierarchy problem is a long-time puzzle that is not solved until

now in the standard model.

Before the Higgs was discovered, another type of model also provides interesting explaination to

the EWSB. It’s the so-called technicolor model [9, 10], for systematic reviews on this topic, see
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[64–66]. This type of model assumes that the EWSB could be a scaled-up QCD. The starting

point is in the chiral limit, to let the QCD vacuum break the EWSB at a scale Fπ = v = 246

GeV through the interaction of the EW gauge bosons with the hyperquarks. The constant

Fπ is analog to the pion decay constant fπ = 93 MeV. Also the Higgs boson is removed from

the model. However, the EW gauge bosons W and Z are not massless, since due to the Higgs

mechanism, the massless QCD pions are eaten and become the longitudinal components of the

gauge fields. The QCD pions are composite states of the elementary quarks. In this way, the W

boson receives a mass of about 29 MeV. This is of course too few comparing to the measured

W mass. In general one considers an extended technicolor sector with a global symmetry

SU(2)L × SU(2)R with the gauge group SU(NTC). Then the Goldstone bosons (GBs) that

becomes the longitudinal parts of the gauge bosons are linear combinations of the pion and

the techni-pion from the new sector, with the mixing angle tanα = fπ/Fπ. The gauge bosons

W and Z will get much more massive since the mixing is dominated by the TC-pion, since

Fπ ≫ fπ.

Technicolor theories solve the hierarchy problem by giving a dynamical origin of the EWSB, in

the same way as the QCD scale is generated. But it has several drawbacks. The technicolor

models fail to keep the Peskin-Takeuchi S parameter [67, 68] in the correct range constraint by

the EW precision tests. The Peskin-Takeuchi S parameter is defined to be [68]

S = −4π
(
Π′
V V (0) − Π′

AA(0)
)
, (2.1.1)

where ΠV V and ΠAA are the vector-vector and axial-axial (axial-vector) correlators, respectively.

The TC predicts an S parameter about 1 where the current bound is [7]

S < 0.14 @ 95% CL. (2.1.2)

Another failure is related to the generation of fermions in the TC models. Different families

of fermions are embedded in the same extended technicolor group, this violates the CP and

leads to FCNC processes that set constraints on the energy scales1. The walking technicolor

model was proposed to resolve this problem, but this idea leads to problems like the anomalous

dimension of the fermion mass operator isn’t large enough [71].

1The problem with FCNC processes is typical in the one family model with extended techni-color (ETC)
group [69]. Additional terms contribute first to the KL − KS mass difference that is accurately measured and
second, to the µ → eēe, eγ, which is not observed. Having the FCNC processes suppressed requires an ETC scale
∼ 103 TeV [70]. This will in turn lead to a mismatch of the top quark mass. Review see for example [71]. Adding
scalar to TC models see [72–75]
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Both of the attempts face different challenges when trying to explain the origin of the electroweak

symmetry breaking. The Higgs model is confirmed by the discovery of the Higgs boson at the

LHC, but it suffers from the naturalness problem. In the meanwhile the technicolor models

can’t find a balance between the solving the naturalness problem and having FCNC processes

under control. Also it does not contain a light scalar that can be identified as the already found

Higgs boson. A new type of model must be constructed that contains a naturally light Higgs

boson while can explain the dynamical origin of the EWSB.

Clearly, combining the two ideas of the Higgs model and the technicolor is a natural and

economical candidate of such a model. If the Higgs is a pseudo Nambu-Goldstone boson (pNGB)

of a broken symmetry, then it’s mass can be naturally light. This is the idea behind the

composite Higgs model. First brought up by Kaplan and Georgi [76–78], the CH model considers

an extra strongly interacting sector, like in the technicolor models. This new strong sector has an

global symmetry G. This global symmetry group is sponatenously broken down to a subgroup

H at the energy scale f . The degrees of freedom (dof) from the coset G/H give rise to the

Higgs and longitudinal components of the W and Z bosons. At this stage the Higgs is still an

NGB. The standard model particles are considered to be external of this strong sector. If gauge

the subgroup H0 ⊂ G with the SM EW gauge group and the composite operators are in the

complete representation of the global group, the interactions between the SM gauge bosons and

the extended quarks from the new strong sector will break the global symmetry G explicitly.

This generates a Higgs potential at 1-loop that triggers an EWSB at the energy scale v = 246

GeV.

The spontaneous and explicit breaking happen at different energy scales f and v, their ratio

ξ = sin2 f/v characterizes the vacuum misalignment. Unlike the TC, these two scales are

separated in the CH models. In the limit ξ → 0, the CH model becomes the Higgs model. In

the other limit ξ → 1, the CH model is a technicolor model plus a light scalar field. Usually the

realistic CH is defined with a small ξ ≪ 1.

The choice of the global group is constraint by the experimental data. To protect the Peskin-

Takeuchi S and T parameters, the invariant subgroup H must contain the custodial symmetry

SU(2)cus
2[79]. Also the invariant subgroup must contain the SM EW group SU(2)L × U(1)Y

as a subgroup. The coset must contain one SU(2)L to allow a Higgs doublet in the model. For

2This symmetry is an unbroken global symmetry in the Higgs sector which relates the charged current interac-
tion with the neutral current interaction in the weak interacting sector. The four components of a Higgs doublet
has a SO(4) symmetry before spontaneous symmetry breaking. When the Higgs acquires a vev, this SO(4) is
broken down to an SO(3) ∼ SU(2). This SU(2) is the custodial symmetry.
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a general non-abelian global flavor symmetry with any gauge group having Dirac fermions, the

symmetry breaking pattern is limited by the reality of the representation of the Dirac fermion

[80]. If the fermions are in the real or pseudoreal representation, then the global symmetry is

bound to be SU(2Nf ) with Nf the number of flavors. One can rewrite the Dirac fermions as 2Nf

Weyl fermions ψfc , f = 1, ..., 2Nf , and the simplest condensation is ψfc ψ
f ′
c′ . If the fermions are in

the real representation, then the global symmetry is broken down to the SO(2Nf ) subgroup. In

this case, the invariant product is in the symmetric 2-index representation of SU(2Nf ). If the

fermions are in the pseudoreal representation, the symmetry breaking pattern is SU(2Nf ) →

Sp(2Nf ), with condensates in the anti-symmetric 2-index representation. If the fermions are in

the complex representation, the global flavor symmetry can only be SU(Nf ) × SU(Nf ).

Based on this discussion, one of the minimal composite Higgs model would have the direct

global symmetry breaking as SU(4) → SO(4). However this breaking doesn’t provide a GB

Higgs which makes it not favored for constructing composite pNGB Higgs model. But it’s

still interesting for technicolor models and lattice studies. The other minimal model will be

SU(4) → Sp(4). This model contains a composite pNGB Higgs and is the minimal model

that we used in the later research. We will review its model construction in section 2.3. Aside

from these models, one can also have SU(5) → SO(5)3 and SU(6) → Sp(6), where both models

provide 14 GBs. For complex representation, the minimal construction would be SU(4)×SU(4),

which has 15 GBs in the coset, provides two Higgs doublets, one triplet and four singlets.

We have only listed the minimal composite Higgs models that have fermions in the fundamental

representation of the gauge group. If the fermion masses are explained through the partial

compositeness, then the models are further classified depending on the gauge symmetry of the

strong sector and different representations of fermions that can form invariants. These mod-

els are named with M1 − M12 in [86]. They are particularly interesting for phenomenological

searches. We will not list them here given that the focus of this thesis is to construct a holo-

graphic version of the minimal model. For a thorough discussion see the original paper [86] and

review [62].

The initial minimal CH model is SO(5) → SO(4) proposed in [87]. It couldn’t be realized

according to the former discussion, but it still serves as a good toy model to explain all the

essential and general discussions on the composite Higgs models. We will review this model in

the next section and justify the introduction of the essential concepts like vacuum misalignment

3Note that for flavor symmetry of the form SU(2Nf + 1), the discussion in the last paragraph doesn’t apply,
see also [81]. In this case the symmetry is realized using just Weyl fermions instead of Dirac fermions. Model
constructions see [82–85].
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and partial compositeness.

2.2 A Minimal Example

This section summarizes the results of the minimal SO(5)/SO(4) composite Higgs model pub-

lished in the early papers by Contino et.al. [87, 88]. We review the basic construction of the

composite Higgs model in solving the naturalness problem and the fast FCNC problem of the

technicolor while providing a naturally light Higgs. For details the readers are recommended to

consult the original papers and the reviews [60, 61]. Related topics on this model see also [58,

59, 89–92].

The global group of the composite sector is SU(3)c × SO(5) × U(1)X . The SU(3)c doesn’t

involve in the discussion, so we omit it and considers the global symmetry SO(5)×U(1)X . This

is spontaneously broken down to SO(4) ×U(1)X . Since Lie algebra of the SO(4) is isomorphic

to the ones of SU(2)L×SU(2)R, this model contains the SM EW group SU(2)L×U(1)Y as an

unbroken subgroup, Y = T 3R+X. The custodial group is identified with the invariant SU(2)V ,

this will protect the Peskin-Takeuchi T parameter from receiving large corrections in this model.

The standard model field contents without the Higgs boson are the elementary particles in

this model and are taken to be external to the composite sector. The coset SO(5)/SO(4)

contains 4 real degrees of freedom. Before gauging the composite sector with the EW gauge

symmetry, these dofs are NGBs. These four NGBs transform as the fundamental representation

of the SO(4), or a complex doublet of SU(2)L. Together with it’s charge conjugation, (H,Hc)

transforms as bidoublet under the SU(2)L × SU(2)R.

Mathematically the spontaneous symmetry breaking are formulated using the effective theory

similar to the chiral symmetry breaking. The GBs are expressed in the Goldstone matrix using

the CCWZ construction

Σ = Σ0e
−i

√
2

f
hâ(x)T â

, Σ0 = (0, 0, 0, 0, 1), (2.2.1)

where â represents the broken generators of the SO(5). f is like the pion decay constant fπ,

and it represents the typical scale of the symmetry breaking. The most general Lagrangian of

the relevant part we are interest in that respects the SO(5)×U(1)X symmetry to the quadratic

order is

L =
1

2
(PT )µν

[
ΠX

0 (q2)XµXν + Π0(q
2)Tr(AµAµ) + Π1(q

2)ΣAµAνΣt
]
, (2.2.2)

18



where PT is the transverse projector (PT )µν = ηµν − qµqν

q2
, q is the momentum. Xµ and Aµ are

the U(1)X and SO(5) gauge fields, ΠX
0 , Π1 are form factors. To get the effective action that

contains only the mass and the Higgs interaction terms, the heavy states are integrated out and

only the EW fields are considered. To further simplify the calculations, we take large N limit

of the form factors and expand around small q2. The Higgs doublet is defined and rotated to

align the vacuum expectation value (vev) along the h3 direction

Ĥ ≡ 1

h
H =

1

h

h1 − ih2

h3 − ih4

→ (h1, h2, h3, h4) = (0, 0, 1, 0). (2.2.3)

The final effective Lagrangian that considers only the composite sector and the EW contributions

is

Leff =(PT )µν
{

1

2

(
f2 sin2(⟨h⟩/f)

4

(
BµBν +W 3

µW
3
ν − 2W 3

µBν
)

+

(
f2 sin2(⟨h⟩/f)

4

)
W+
µ W

−
ν

)
+
q2

2

[
Π′

0(0)W aL
µ W aL

ν + (Π′
0(0) + ΠX′

0 (0))BµBν
]

+ ...

}
,

(2.2.4)

where Π′ = dΠ/dq2. Identifying the factors with the EW coefficients, one see that the EW scale

is

v = f sin
⟨h⟩
f
. (2.2.5)

One can define a parameter ξ to better describe the ratio of the EW and strong dynamics’ scale

ξ ≡ v2

f2
= sin2 ⟨h⟩

f
. (2.2.6)

Expanding the Higgs field around the vev

hâ =


0

0

⟨h⟩ + h

0

 , (2.2.7)

one can get the vector to Higgs couplings modified with the parameter ξ

gV V h =
√

1 − ξgSMV V h, gV V hh = (1 − 2ξ)gSMV V hh. (2.2.8)

The interaction of the SM gauge fields with the composite sector induces a Coleman-Weinberg

potential at 1-loop level. Summing up all the diagrams in fig. 2.1, the Coleman-Weinberg
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Figure 2.1: The 1-loop diagrams of the gauge bosons that contribute to the Coleman-Weinberg
potential [60]. The grey blob encodes the strong dynamics represented by the form factor Π1.

potential from the gauge boson loops is

V (h) =
9

2

∫
d4Q

(2π)4
log

[
1 +

1

4

Π1(Q
2)

Π0(Q2)
sin2

(
h

f

)]
. (2.2.9)

The form factors are associated to different currents at large Euclidean momentum Q2. Π0 is

related to the products of conserved currents Jaµ where Π1 is related to the difference between

the conserved and the broken ones

⟨Jaµ(q)Jaν (−q)⟩ = Π0(q
2)(PT )µν , ⟨Jaµ(q)Jaν (−q)⟩ − ⟨J âµ(q)J âν (−q)⟩ = −1

2
Π1(q

2)(PT )µν .

(2.2.10)

Thus the Π1 is an order parameter that characterizes the transition from the symmetry broken

phase to the unbroken phase, and it should vanish in the higher energy scales. If Π1 vanishes

fast enough in the higher energy, the integral in the potential will be convergent and positive.

However, as pointed out by Witten [93], like in the QCD, the gauge boson loop induced Coleman-

Weinberg potential of the pions tends to align the vacuum along the direction that preserves

the gauge symmetry. This also happens in the minimal composite Higgs model. Where one can

show that after including the Higgs potential generated by the gauge boson loops, the vacuum

is aligned with the SU(2)L preserving direction, i.e. ξ = 0.

Several proposals are brought up to misalign the vacuum, such as introducing additional ele-

mentary scalar that mixes with the composite Higgs [76]4, exchange of heavy vectors at higher

scale to break the global symmetry explicitly [77], extend the composite sector global symmetry

to include an extra U(1)A such that the EW is preserved while the global symmetry is broken

[78, 82, 94, 95]. An very interesting solution among them is the partial compositeness, which

we will discuss next.

4This is done by introducing an extra fundamental scalar (not Higgs), which in turn introduces a Yukawa
coupling that forces the misalignment.

20



2.2.1 Partial Compositeness

So far the discussion is restricted to the gauge bosons’ contributions. The effective Lagrangian

eq. (2.2.4) doesn’t contain the terms that explain the fermion mass. This issue is also related

to the hierarchy of the quark masses. Why do the quarks have the observed flavor families

where different families are separated by mass gaps. Especially the heavies quark, the top

quark, is about 105 times heavier than the lightest quark — the up quark. This could be

explained, together with the fermion mass generation and vacuum misalignment, by the partial

compositeness of the physical quark. Since the top quark is the heaviest, it suffices to restrict

the discussion on the partial compositeness of the top quark.

The idea of partial compositeness is to inlcude a linear coupling of the elementary fermions with

the strong sector fermionic operator [8, 87, 96]

∆L = λq̄O + h.c., (2.2.11)

where λ is the linear coupling, q is the elementary fermion. O is the composite fermionic operator

that has the same quantum number as the SM fermions under the SM group. It is analog to

the QCD baryon5. This interaction adds an additional contribution to the Coleman-Weinberg

potential and thus misalign the vacuum. The different quark mass hierarchies are controlled

by the coupling strength of different quark families, if such interactions are added for all three

quark families. This mechanism gives in this way a natural explanation of the flavor hierarchy

— the heavier quarks have stronger couplings. To see that including such a contribution to

the Coleman-Weinberg potential misaligns the vacuum, it suffices to include just the top quark

generation.

Suppose the global symmetry is still SO(5) × U(1)X . The elementary particles are the SM

ones. The composite fermionic operators transform as a complete representation of the global

symmetry group, but the elementary fermions don’t. The Lagrangian will in addition contain

the terms

L = λq q̄LOq + λuūLOu + λdd̄LOd + h.c.. (2.2.12)

For simplicity the coupling matrices λq,u,d are assumed to be diagonal. The fermion fields are

5If realize this holographically, the operator O will be a fermionic operator in the field theory, which is realized
in the bulk (gravitational theory) as a fermionic bulk field. This is however beyond the scope of this these, we
will not discuss the further details.

21



embedded in the full SO(5) spinorial representation as

Ψq =

 qL

QL

 , Ψu =


quRuR
d′R


 , Ψd =


qdRu′R
dR,


 , (2.2.13)

where QL, qu,dR , u′R and d′R are spurions. They are external non-physical sources. Consider the

most general Lagrangian that is invariant under SO(5) × U(1)X , keeping only the top quark

generation as physical fields while setting all the other quarks to zero6, one arrives at the effective

Lagrangian

Leff,t =q̄L/p (Πq
0(p) + Πq

1(p) cos(h/f)) qL + t̄R/p (Πu
0(p) − Πu

1(p) cos(h/f)) tR

+ sin(h/f)Mu
1 (p)q̄LĤ

ctR + h.c..
(2.2.14)

where Ĥ is defined in eq. (2.2.3) and Ĥc = iσ2Ĥ is the charge conjugation of the Higgs doublet,

with σ2 the second Pauli matrix. Π0,1 and M1 are the form factors in the kinetic and the mass

terms.

The additional Coleman-Weinberg potential from the fermionic loops is

V (h) = − 2Nc

∫
d4p

(2π)4

{
2 log

(
1 +

Πq
1

Πq
0

cos
h

f

)
+ log

(
1 − Πu

1

Πu
0

cos
h

f

)
+ log

(
1 − (Mu

1 sin(h/f))2

p2(Πq
0 + Πq

1 cos(h/f))(Πu
0 − Πu

1 cos(h/f))

)}
.

(2.2.15)

The form factors Πu,q
1 and Mu

1 decrease fast enough for large Euclidean momentum p2, the

integral is finite and the potential can be approximated with

V (h) ≃ α cos
h

f
− β sin2 h

f
, (2.2.16)

where α and β are defined as

α = 2Nc

∫
d4p

(2π)4

(
Πu

1

Πu
0

− 2
Πq

1

Πq
0

)
, β =

∫
d4p

(2π)4

(
2Nc

(Mu
1 )2

(−p2)(Πq
0 + Πq

1)(Π
u
0 − Πu

1)
− 9

8

Π1

Π0

)
.

(2.2.17)

Then the Higgs potential has a minimum at

ξ = sin2 ⟨h⟩
f

= 1 −
(
α

2β

)2

, (2.2.18)

6More generally, one can realize this by performing a rotation in the flavor space, which results in a basis
where only the third quark generation contributes.
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if α < 2β. I.e. vacuum is misaligned by including the linear coupling between the top quark

and the composite fermionic operator.

2.3 An SU(4)/Sp(4) Model

In this section we review a minimal composite Higgs model that is made holographic later in

the research part. The original paper is [80]7. A thorough review including the application of

partial compositeness mechanism and lattice results can be found in [62]. Earlier constructions

see [97].

2.3.1 Model Setup

The global symmetry in the composite sector is SU(4) realized by two Dirac fermions trans-

forming as the fundamental representation of the SU(2) gauge group. Such a model is first

constructed in [98, 99]. The general Lagrangian in terms of Dirac spinors is

L = −1

4
F aµνF

aµν + Ū(iγµDµ −m)U + D̄(iγµDµ −m)D, (2.3.1)

where U and D are the fermion fields from the new composite sector having the same mass

m, Dµ is the covariant derivative contains gauge bosons from the strong sector. In the limit

m→ 0, the above Lagrangian manifests a SU(4) global symmetry of the fermions

UL =
1

2
(1 − γ5)U, UR =

1

2
(1 + γ5)U, DL =

1

2
(1 − γ5)D, DL =

1

2
(1 + γ5)D. (2.3.2)

For a non-vanishing fermion mass m ̸= 0, the global symmetry SU(4) is broken explicitly. This

can be seen by performing an SU(4) transformation on the Lagrangian as follows. Rewriting

the Lagrangian as

L = −1

4
F aµνF

aµν + iŪγµDµU + iD̄γµDµD+
m

2
QT (−iσ2)CEQ+ (

m

2
QT (−iσ2)CEQ)†, (2.3.3)

7Here we choose to keep the original notation such that one can compare with the paper immediately. We
changed the notation in the research part in chapter 5, but the main idea is the same. The take home message
is that a mixing angle θ characterizes the transition between the CH an TC phases in this model.
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where Q is defined as

Q =


UL

DL

ŨL

D̃L

 , ŨL = −iσ2CŪTR , same for D̃L. (2.3.4)

C is the charge conjugation operator, σ2 is the Pauli matrix. The matrix E is

E =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 . (2.3.5)

Now performing a general SU(4) transformation

Q→ (1 + i
15∑
n=1

αnT
n)Q (2.3.6)

on the Lagrangian eq. (2.3.3), this will generate an extra term

L → L +
im

2

15∑
n=1

αnQT (−iσ2)C(ETn + TnTE)Q+ h.c., (2.3.7)

which only vanishes for the generators that fulfill the condition

ETn + TnTE = 0. (2.3.8)

This is the defining condition for Sp(4) generators. I.e. for non-vanishing fermion mass from

the new sector, the global symmetry SU(4) is explicitly broken down to Sp(4).

The same symmetry breaking can be induced spontaneously when the strong sector fermions

condense. The electroweak sector is embedded in the model by organizing the two left handed

strong Weyl fermions into a SU(2)L doublet QL = (UL, DL) with hypercharge of 0. The two

singlets ŨL an D̃L are assigned with hypercharge ±1
2 respectively.

The spontaneous breaking of the global symmetry is modeled non-perturbatively using the

CCWZ construction. The definition of the vacuum Σ in not unique. There are two inequivalent
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vacuums

ΣA =

iσ2 0

0 iσ2

 , ΣB =

iσ2 0

0 −iσ2

 , (2.3.9)

that are not related to each other by any transformation. But the choice is physics independent

and both of them preserves the electroweak symmetry. In the following the vacuum is chosen

to be ΣB.

Using eq. (2.3.8) and replacing E with ΣB, one arrives at the unbroken SU(4) generators

S1,2,3 =
1

2

σi 0

0 0

 , S4,5,6 =
1

2

0 0

0 −σTi

 , S7,8,9 =
1

2
√

2

 0 iσi

−iσi 0

 , S10 =
1

2
√

2

0 1

1 0

 .

(2.3.10)

The generators S1,2,3,4,5,6 form a SU(2)L × SU(2)R subgroup of SO(5). The five broken gener-

ators are

X1 =
1

2
√

2

 0 σ3

σ3 0

 , X2 =
1

2
√

2

 0 i

−i 0

 , X3 =
1

2
√

2

 0 σ1

σ1 0

 ,

X4 =
1

2
√

2

 0 σ2

σ2 0

 , X5 =
1

2
√

2

1 0

0 −1

 .

(2.3.11)

Having found the broken generators, we can write the Goldstone matrix to the first order in

fluctuations as

Σ = ϵ
i
ϕi
f
Xi

ΣB ∼ ΣB +
1

2
√

2f


0 iϕ5 ϕ4 + iϕ3 ϕ2 − iϕ1

−iϕ5 0 −ϕ2 − iϕ1 ϕ4 − iϕ3

−ϕ4 − iϕ3 ϕ2 + iϕ1 0 iϕ5

−ϕ2 + iϕ1 −ϕ4 + iϕ3 −iϕ5 0

 . (2.3.12)

The interactions of the GBs are encoded in the kinetic term

TrDµΣ†DµΣ, (2.3.13)

where Dµ is the covariant derivative that contains the EW gauge bosons. This term doesn’t

generate mass for the gauge bosons, so introduce the matrix

ΣH = E = 2
√

2iX4ΣB, (2.3.14)

which breaks the EW symmetry completely. When ϕ4 acquires a vev, the GBs ϕ1,2,3 are eaten
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by the W and Z bosons and contribute to the gauge bosons’ masses. The electric charge is

Q = T 3 + Y = S3 + S6 which is invariant with respect to the vacuum ΣH .

When ϕ4 acquires a vev, ϕ4 is identified with the Higgs. The left scalar ϕ5 is a singlet and is

identified as η. The broken generators associated with ΣH are S1−S4, S2−S5, S3−S6, S8 and

X4, where the invariant ones are S1 +S4, S2 +S5, S3 +S6, S7,9,10 and X1,2,3,5. The generators

S1 + S4, S2 + S5, S3 + S6 manifest a invariant SU(2)D.

The full symmetry breaking pattern in this model is organized by the superpositions of the two

vacuums

Σ0 = cos θΣB + sin θΣH , Σ†
0Σ0 = 1. (2.3.15)

In this way, the vacuum is actually a mixture of two breaking procedures. The angle parametrizes

the type of the model: this setup will describe a technicolor model in the limit θ = π/2, and

it will become EW unbroken model in the other limit θ = 0, where when θ ≪ 1 it describes

a realistic composite Higgs model. The broken generator in this case are also parametrized by

the mixing angle

Y 1 =cθX
1 − sθ

S1 − S4

√
2

, Y 2 = cθX
2 + sθ

S2 − S5

√
2

, Y 3 = cθX
3 + sθ

S3 − S6

√
2

,

Y 4 =X4, Y 5 = cθX
5 − sθS

8, cθ = cos θ, sθ = sin θ.

(2.3.16)

The fluctuations associate to Y 1,2,3 are eaten by the W and Z bosons, and the fluctuations

associate to the Y 4 and Y 5 are the physical Higgs and singlet scalar with respect to SU(2)L

respectively.

2.3.2 Further Aspects of this Model

If one plugs in the above definitions into the kinetic term of the Goldstone matrix, one can read

off the masses of W and Z bosons and their coupling strength to the Higgs h and the singlet η.

We will not review the exact expressions in this section, but rather summarize further physical

interesting implementations in this model.

Introducing the EW gauge interactions into the strong sector will induce a Coleman-Weinberg

potential as usual. Also, the vacuum is misaligned by the contribution of the top quarks. This

is implemented by inserting a dimension-six four-fermion operator in a technicolor way [100,
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101]
yt
Λ2
t

(Qtc)†αψ
TPαψ, (2.3.17)

where Pα is the projectors that select the part of ψTψ that transforms as a SU(2)L doublet.

ψ is the techni-fermion from the strong sector. If adding only the Coleman-Weinberg potential

generated by the top loop, one finds that the minimum is at θ = π/2. So adding top contribution

will align the vacuum to the technicolor one.

There is an interesting case associated with the dark matter. One can introduce a techni-Higgs

σ, like the σ field in QCD. When in the technicolor vacuum, i.e. setting θ = π/2, σ becomes

the actual Higgs, while (h, η) are degenerated and stable. They make thus good candidates for

dark matter in this model.

This model predicts a lightest ρ mass of about 2.5 TeV and the lightest axial-vector mass

mA of 3.3 TeV, both in the technicolor limit. For a composite Higgs model, their masses are

generally much higher, and are therefore expected to be challenging to find at the LHC. Later

in chapter 5 we predicted the mass ratio between the two, see section 5.4. We predict a ratio of

mV /mA ∼ 1.26, which is larger than the ratio shown here ∼ 0.76.

2.4 Combining with Holography

One way to perform calculations related to the strong dynamics in CH models is to employ the

gauge/gravity duality and construct a holographic CH model by turning on extra dimensions.

Such a model was first proposed in [87], the aim was to employ the holography to move the

hard calculations to a 5D model where perturbative calculations are viable. The model was

inspired by the AdS/CFT correspondence, but the discussions was not based on the explicit

conjecture. The extra dimension in this model was merely a tool to provide easy solution on

the calculations that a pure 4D theory isn’t able to provide.

The basic idea in the early model is to rewrite the 4D composite Higgs model in a 5D form.

The symmetry breaking is manifest using two branes, IR and UV branes, located at different

positions along the 5th dimension. In the bulk, i.e the space between the two branes, the

model is assumed to have a global symmetry SU(3)C × SO(5) × U(1)X . This is the same

symmetry as in the 4-dimensional case. On the IR brane, this global symmetry is broken down

to SU(3)C × SO(4) × U(1)X , while on the UV brane, the global symmetry is broken down

to SU(3)C × SU(2)L × U(1)Y . These breaking patterns are implemented by imposing correct
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boundary conditions for the gauge bosons. The bulk gauge fields Aµ representing the global

symmetries have non-vanishing fifth component only for the ones associated with the coset

SO(5)/SO(4). It’s exactly these components that are later taken to be the composite pNGB

Higgs. The 5D theory is then matched with the 4D theory by integrating out the bulk fields on

the UV-brane. The form factors are calculated in the 5D theory and plugged in the 4D theory

after matching the two theories.

Simply extending the theory to contain an extra dimension is a common way to perform per-

turbative calculations in the CH models. Usually this doesn’t imply that the model has a well

defined UV theory that evolves all the way down to the low energy theory like in QCD. Another

possibility is to stick to the definitions of the holography and interpret the UV brane as where

the UV theory is defined. This idea is realized in the same way as the AdS/QCD model, except

that the dual strong theory is more broadly defined. Such models are mostly based on the hard-

wall AdS/QCD model, where the UV and IR scales are introduced as cut-offs, see for example

[88]. Some of the models are constructed analog to a soft-wall model (for definition and details

see section 3.5), but IR scale in the end is not dynamically generated, see for example [49–51,

102]. The reason for that is, the soft-wall models usually adopt an extra warp factor that is a

function of the extra dimension into the action without justifying it’s origin.

The holographic CH model constructed in this thesis has three main differences comparing to

the others. First the IR scale is generated dynamically where it’s origin from the top-down

model in the string theory is made clear. Second, the composite pNGB Higgs is not just

the fifth component of the gauge field, but rather a scalar field that lives in the bulk and

evolves dynamically together with the theory. Also, even though the global symmetry group is

claimed to be non-abelian in many models, their actual holographic constructions are essentially

degenerated abelian theories. In our research, we construct a true non-abelian composite Higgs

model by considering multiple flavor branes located at different positions in the transverse

directions. The degeneracy is lifted by the separations of the flavor branes.
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Chapter 3

Gauge/Gravity Duality

Being initially a theory proposed to explain the strongly coupled quark bound states, string

theory has always been deeply related to strongly coupled gauge theory, for instance the QCD.

Corresponding researches are boosted by the birth of AdS/CFT correspondence [11]. Such

a conjecture went through rapid development and the correspondence is extended to general

gauge theories, giving rise to the more general gauge/gravity duality.

One major application of such correspondence is the calculations in SM strongly interacting sec-

tor and BSM model building. Giving that QCD is strongly coupled in the low energy regime,

perturbation theory is no more applicable as in QED. The correspondence provides an econom-

ical tool to perform such calculations in the dual gravity theory. Not only is it useful in QCD,

an active research field of the correspondence is to construct BSM models that contains strongly

coupled sector(s), such as the composite Higgs models and the technicolor models with the help

of the gauge/gravity duality. The major advantage of the correspondence is the potential of

linking the low-energy effective BSM field theory to theories at higher energies that can provide

a dynamical origin of the model. Such applications is the focus of our research present in this

thesis.

This chapter is dedicated to review and summarize the necessary materials of the gauge/gravity

duality. The focus of this thesis is the D3/D7 model, it’s non-abelian construction of the

bottom-up version, and the application of such a bottom-up model on composite Higgs models.

Therefore in the following we will only review selective topics that are relevant to our research.

Since the whole discussion is based on gravity theory in AdS spaces, we will first review the AdS

space in section 3.1. Then in section 3.2 we review the concept of AdS/CFT correspondence
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and the holographic dictionary (field-operator map). After establishing the fundamentals, we

review a top-down model constructed by D3-stacks and D7-probe in section 3.3. This model

utilizes the AdS5/CFT4 correspondence to reproduce meson spectrum. Of course such a top-

down model cannot reproduce QCD in the dual gauge theory, since the supersymmetry is not

completely broken and it doesn’t incorporate the confinement and chiral symmetry breaking,

which distinguishes QCD from many gauge theories like the electormagentic theory and N = 4

SYM. Therefore, we first review the implementation of confinement in holographic model in

section 3.4. Then we introduce the Constable-Myers background which shows confinement for

certain parameter space, and introduce the chiral symmetry breaking in this background in

section 3.4.1. We review briefly another background that incorporates both of these properties

in section 3.4.2, which will be useful in the research part in chapter 4.

We have collected all the essential parts from the top-down model at this stage, so we move on

to the bottom-up models. We first review the AdS/QCD model proposed in [39] in section 3.5.

This is the foundation of general bottom-up models. Then we review the dynamical AdS/YM

model in section 3.6. This model captures the essence of the top-down D3/D7 and the bottom-

up AdS/QCD. The dual theory is no more restricted to QCD, but to a general YM theory.

The confinement is generated dynamically and is no more inserted by hand as in the AdS/QCD

model. This dynamical AdS/YM model is the starting point of our research part. In the end, we

review Witten’s double-trace prescription and the insertion of NJL interaction in holographic

models. These two techniques are useful in constructing the composite Higgs model in chapter 5.

3.1 AdS Spacetime

The Anti-de Sitter (AdS) spacetime lies at the heart of the AdS/CFT correspondence. The

isometry group of AdSd+2 — SO(2, d+ 1) coincides with the conformal symmetry group of the

d+ 1-dimensional Minkowski spacetime. It is this relation that leads to the identification of the

physics defined on the two sides. In this section we summarize some basic concepts of the AdS

spacetime.

Usually the AdS geometry and related properties can be found in various lecture notes, text-

books or reviews of the AdS/CFT correspondence or gauge/gravity duality. [12] provides a

comprehensive introduction to the AdS geometry and the field theory’s properties. The dis-

cussion in [103] is more thorough and contains more details on the causal structure of the AdS

spacetime and it is more physics-related. For a concise introduction see [104]. Various coor-
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dinates of the AdS are associated to different physical problems. They are most thoroughly

gathered in [105]. For a more mathematical discussion from an abstract differential geometry

and group theory point of view, see [106], also [107]. The following review is mainly based on

[12].

The AdS spacetime is the solution of Einstein equations associated to the negative cosmological

constant, with negative curvature. The “anti” in its name refers to the sign difference comparing

to the de Sitter spacetime, since the de Sitter spacetime is the solution with a positive curvature,

associated to a positive cosmological constant.

To construct a d+2-dimensional AdS spacetime, the easiest way is to embed a d+2-dimensional

hyperboloid in a d + 3-dimensional flat spacetime with two timelike directions R2,d+1. Mathe-

matically it is expressed as

X2
0 +X2

d+2 −
d+1∑
i=1

X2
i = R2, ds2 = −dX2

0 − dX2
d+2 +

d+1∑
i=1

dX2
i , (3.1.1)

where R is the radius of curvature.

There are various solutions (coordinates) that satisfy this definition. We will only discuss the

most commonly used ones. There are three of them. The first solution is the global coordinates

of AdS (τ, ρ,Ωi)

X0 = R cosh ρ cos τ, Xd+2 = R cosh ρ sin τ,

Xi = R(sinh ρ)Ωi, (i = 1, ..., d+ 1;
∑

ω2
i = 1),

(3.1.2)

ωi are the coordinates of the Sd sphere. In this coordinate, the AdSd+2 metric becomes

ds2 = R2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2). (3.1.3)

Where τ ∈ [0, 2π) and ρ ≥ 0 covers the hyperboloid once. The τ direction forms a closed

timelike circle, which is disfavored by the causality. To construct a causal AdS spacetime, one

simply opens this circle, by letting the time extend from −∞ to ∞.

The second coordinate is the conformal coordinate. This coordinate is called “conformal” due

to the fact that after a conformal compactification, the AdSd+2 boundary coincides with the

one of one half Einstein universe. To show this, start with the AdSd+2 space

ds2 = −dτ2 + dθ2 + sin2 θ dΩ2. (3.1.4)
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Figure 3.1: The conformal mapping of a constant τ slice of AdS3 to half of the Einstein universe.
Picture taken from [12]

Perform a transformation tan θ = sinh ρ, θ ∈ [0, π/2), this will bring the metric to the form

ds2 =
R2

cos2 θ
(−dτ2 + dθ2 + sin2 θ dΩ2). (3.1.5)

A conformal rescaling of the above metric arrives at the Einstein universe, while the causal

structure is preserved. This shows that the conformal boundary of AdSd+2 is a flat (d + 1)

Minkowski spacetime, or the AdS spacetime is asymptotically flat.

Pictorially, this can be viewed as follows. After conformal compactification, for a constant τ

slice, the north pole of Sd+1 is mapped to the center of the disk Dd, the equator is mapped

to the boundary and the spaces in between is mapped to the inside of the disk. The equator

becomes the boundary of the space with the topology of Sd. For an evolving timelike τ , the

AdS spacetime is mapped to a “cylinder”, as illustrated in fig. 3.1.

The third coordinate is the Poincaré coordinates (u, t, x⃗)

X0 =
1

2u

(
1 + u2(R2 + x⃗2 − t2)

)
, Xi = Ruxi, (i = 1, ..., d),

Xd+1 =
1

2u

(
1 − u2(R2 − x⃗2 + t2)

)
, Xd+2 = Rut, u > 0, x⃗ ∈ Rd.

(3.1.6)

In this coordinate, the AdSd+2 metric is

ds2 = R2

(
du2

u2
+ u2(−dt2 + dx⃗2)

)
. (3.1.7)
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This coordinate covers only half of the hyperboloid. Further define z = 1
u , this will transform

the line element into

ds2 =
R2

z2
(
dz2 + (−dt2 + dx⃗2)

)
. (3.1.8)

Both of these two definitions are widely used in the AdS/CFT literature, usually u is replaced

by r, representing the radial direction.

3.2 AdS/CFT Correspondence

In this section we will review the AdS5/CFT4 correspondence. This conjecture is based on

the dynamical object, the so-called D-branes in string theory. D-branes or more explicitly Dp-

branes are objects where the open strings can end. “D” stands for Dirichlet, means that the

open strings ending on the branes have Dirichlet boundary conditions. It is p+ 1-dimensional,

where p represents the number of spatial directions. For N coincident Dp-branes, the massless

open strings live on it realize a U(N) gauge symmetry. The action of a single Dp-brane is

described by the Dirac-Born-Infeld action (DBI action), it’s explicit form will show up in the

later sections.

In the following we review the conjecture based on the two limits of the D3-brane. Then we

show the field-operator map, or the so-called holographic dictionary. In the end we show the

explicit relation that connects the theory on the two sides.

The AdS/CFT correspondence has different versions depends on the dimensionality of the AdS

space. For this thesis, we only need the AdS5/CFT4 correspondence. This subject is usually

covered in standard string theory textbooks and various lecture notes, with different focuses.

The review in this section is based on [12, 108–111].

3.2.1 A Qualitative Explanation

The bridge that connects the two sides of the duality is the D3-branes stack, i.e. N coincident

D3-branes. The correspondence can be understood from two aspects. The easier and more

elegant aspect is the symmetry. In 10D spacetime, N coincident D3-branes describe SU(N)

N = 4 SYM theory. The N = 4 SYM theory is a theory with conformal symmetry SO(4, 2).

which contains usual Lorentzian symmetry transformations plus conformal transformations, in

total 15 symmetry generators. From the supersymmetric perspective, the N = 4 SYM has an
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internal global symmetry, which is the R-symmetry, represented by the SU(4)R. The conformal

group is isomorphic to SU(2, 2), together with the R-symmetry group, they can be written

compactly as SU(2, 2|4), which describes a N = 4 supersymmetric theory.

On the other hand, the near-horizon geometry of a D3-stack is an AdS5×S5 spacetime. The S5

has a SO(6) ≃ SU(4) isometry, where AdS5 has a isometry group SO(4, 2). Since the symme-

tries of the weakly coupled gravitational theory on AdS space matches with the symmetries of

the strongly coupled N = 4 SYM theory, it was postulated that the two theories describe the

same dynamics in the form of duality.

The other aspect of understanding the duality is using the two limits of the D3-stack in the

low-energy limit
√
α′E ≪ 1, or equivalently E ≤ E0 when α′ → 0, E0 represents an energy

bound here. α′ is the slope parameter which is related to the string length ls as ls = ℏc
√
α′. The

true low-energy limit is the Maldacena limit if in addition U = r
α′ is fixed given that E ∝ U .

Here r is the u in eq. (3.1.7). Note that one can also understand the r as the distance between

a D3-brane sitting at r⃗ and a D3-stack sitting at r⃗ = 0. Then the “W-boson”, which is the

string stretching between the two D3 sets, has a mass proportional to this distance r. There

are two types excitations in the theory: open and closed strings. The coupling between the

open and closed strings is g, where one can define the ’t Hooft coupling λ = 4πgN = g2YMN

with N the number of D3-branes. Through out the discussion, the large N limit is kept. In

the large N limit, the leading order diagrams are planar diagrams [112], where the higher order

contributions are suppressed by powers of 1/N .

Consider the IIB superstring theory in flat (9+1)D Minkowski space, where the D3-stacks are

embedded along the directions (t, x1, x2, x3). In the limit when the string coupling g is small

g ≪ 1, the theory describes open string excitations from the D3-branes interacting with the

closed string from the 10D flat Minkowski spacetime. The interactions are weighted by the

string length squared α′. When taking the low energy limit α′ → 0, the open strings decouple

from the closed strings. One finds that the open strings describe a SU(N) N = 4 SYM theory

while the closed strings describe a free IIB supergravity theory in flat 10D spacetime.

If now dial up the string coupling constant g to the regime gN ≫ 1, the gravitational effect of

the D-branes changes the spacetime geometry, where the D3-branes become solitonic solution

of supergrvity. In this case the solution is

ds2 = H(r)−1/2dxµdxµ +H(r)1/2(dr2 + r2dΩ2
5), (3.2.1)
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with

H(r) = 1 +

(
R

r

)4

, (3.2.2)

where xµ for µ = 0, ...3 is the 4D spacetime, r2 =
∑9

i=4 x
2
i and R4 = 4πgNα′2 is the radius of

the horizon. Depending on the relation of R and r, the geometry has different asymptotics. In

the near horizon region or throat where r ≪ R , one has H(r) ∼ R4/r4, the metric describes

an AdS5×S5 geometry. At the infinity r ≫ R, H(r) ∼ 1, the metric essentially describes a flat

spacetime.

An observer at the infinity can observe two kinds of low energy excitations: one is the low energy

excitations at the infinity, which are the closed strings in 10D flat spacetime, the other one is the

red-shifted high energy excitations from the throat, which are closed strings on the AdS5 × S5.

In this case, the theory is well described by two decoupled systems: low-energy closed strings

on the flat space and IIB superstrings on the near-horizon geometry. When looking at the two

limits of the same D3-branes, there are two sets of decoupled theory while both of them contain

a IIB string theory on 10D flat spacetime. The remaining two theories must describe the same

dynamics. Therefore one can identify the SU(N) N = 4 SYM theory with the IIB supergravity

on AdS5 × S51. This is the AdS5/CFT4 correspondence, the coupling constants g, gYM , the

horizon radius R and the string length
√
α′ are related by

λ = 4πgN = g2YMN =
R4

α′2 . (3.2.3)

The AdS/CFT correspondence is still a conjecture. Depends on it’s range of validity, there are

three versions of the correspondence. The strongest version states that the conjecture is valid

for all values of g and N . The weaker version assumes that the correspondence is valid in the

large N limit for any finite gN . The weakest version requires that the correspondence is valid

only in the ’t Hooft limit, i.e. in the large N and large gN limit. For the works reviewed and

developed in this thesis, we assumed the weakest version of the correspondence.

The correspondence relates a 10D IIB superstring theory in AdS5 × S5 with a SU(N) theory

in the 4D flat spacetime. Since the asymptotic boundary of AdS5 is the 4D flat spacetime, after

Kaluza-Klein decomposition on the S5, this correspondence realizes the holographic principle,

which states that the informations in a Vd+1 volume is encoded on it’s Ad boundary area [108].

1Theoretically, N coincident D-branes manifest a U(N) gauge symmetry. But the duality is only about an
SU(N). The reason is that, the U(1) factor corresponds to the center of mass motion of the D-branes, which
encodes the topological theory of the Kalb-Ramond B-field on AdS. This U(1) gauge field lives on the AdS
boundary, and the corresponding modes are called singletons [12].
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3.2.2 Field-Operator Map

Following the discussion in the last part, the correspondence states that the bulk fields in the

5D theory after the Kaluza-Klein decomposition on the S5 is dual to the operators in the 4D

CFT lives on the conformal boundary of the AdS space

O ↔ ϕ|AdS boundary. (3.2.4)

Moreover, the mass of the field is related to the scaling dimension of the dual operator. To see

this, one can consider, without loss of generality, a scalar field (also called primary operator) in

CFT. Under the dilatation

xµ → λxµ, (3.2.5)

the primary field O scales as

O(xµ) → λ−∆O(λxµ), (3.2.6)

where ∆ is the scaling dimension of the primary operator O2.

Now consider an AdSd+1 spacetime on the Poincaré slice, as defined in eq. (3.1.8)

ds2 =
R2

z2
(
dz2 + dxµdx

µ
)
. (3.2.7)

The action for a scalar field ϕ(xµ, z), µ = 0, ..., d − 1, with mass m that lives in the d + 1-

dimensional AdS spacetime is

∫
dzddx

(
∂Mϕ∂Mϕ+m2ϕ2

)
, (3.2.8)

where M is the spacetime index, runs from 0, ..., d = (xµ, z). The equation of motion of this

scalar field is the Klein-Gordon equation in (d+ 1)D. Solving the equation of motion for ϕ, the

solution has a UV (z → 0) asymptotics

ϕ|z→0 → ⟨O⟩z∆+ + J z∆− , (3.2.9)

where

∆± =
d

2
±
√
d2

4
+m2R2, ∆+ + ∆− = d. (3.2.10)

2The scaling dimension is the eigenvalue of the the scaling operator D in CFT. The primary operators O
are the operators or fields in the CFT with the lowest scaling dimension. Mathematically, in a d-dimensional
spacetime, the primary operator will be annihilated by the special conformal transformation Kµ, µ = 0, ..., d− 1:
[Kµ, O(0)] = 0. Details see for example [12, 108].
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operator relation

scalars ∆± = 1
2(d±

√
d2 + 4m2)

spinors ∆ = 1
2(d+ 2|m|)

vectors ∆± = 1
2(d±

√
(d− 2)2 + 4m2)

p-forms ∆± = 1
2(d±

√
(d− 2p)2 + 4m2)

firs-order (d/2)-forms (d even) ∆ = 1
2(d+ 2|m|)

spin-3/2 ∆ = 1
2(d+ 2|m|)

massless spin-2 ∆ = d

Table 3.1: The mass-dimension relations for other types of fields when R = 1. Table taken from from
[114].

The dual operator’s scaling dimension ∆ = ∆+ is related to the bulk field’s mass m through

the relation

m2R2 = ∆(∆ − d). (3.2.11)

The above condition comes from matching the SUGRA scalar solution with the one from the

dual CFT. As indicated by the notation, ⟨O⟩ is the vev of the dual operator O, this term is the

normalizable solution, corresponding to physical fluctuations [113]. J is the source that couples

to the operator O with the dimension ∆+ in the dual field theory, which is non-normalizable,

corresponds to the non-fluctuating background. Normalizable means that when evaluating the

action on the solution, the action is finite. The mass-scaling dimension relation in eq. (3.2.11)

exists for all other types of fields. These relations are worked out in various papers. A summary

for R = 1 can be found in [114], we list them in table 3.1.

For massive scalar fields that live in an AdSd+1 spacetime, there exists a so-called Breitenloher-

Freedman bound (BF bound)3

m2R2 ≥ −d2/4. (3.2.12)

If the squared mass m2 (when R = 1) passes below this bound, the potential of the scalar field

doesn’t have a minimum anymore, i.e it turns unstable. What is special about this bound is,

for scalar field with m2R2 < 0, the potential can still be stable above this bound.

The scaling (conformal) dimension of the dual scalar operator is also bounded by the unitarity

of the dual gauge theory

∆ ≥ (d− 2)/2. (3.2.13)

3The relation of this bound to our model in the research part is reviewed in appendix B.
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For operators with scaling dimension ∆ ∈ [(d − 2)/2, d/2), one can switch the role of the vev

and the source in the UV asymptotics of the scalar solution. Translate into m2R2, if the bulk

scalar field’s m2R2 is in the range [108]

−d
2

4
< m2R2 ≤ −d

2

4
+ 1, (3.2.14)

then one has a freedom in defining the vev and the source terms.

Since the two theories are identified at the boundary, their partition functions should be the same

at the boundary. As pointed out in [115, 116], quantitatively the duality means the generating

functional of the 4D CFT is equal to the SUGRA action evaluated on the AdS boundary4

eW |CFT =
〈
e
∫
d4xϕ0(x)O(x)

〉
CFT

≈ eextreme SSugra , (3.2.15)

or put it another way 〈
e
∫
d4xϕ0(x)O(x)

〉
CFT

= e−SSugra |ϕ=ϕ0 . (3.2.16)

Here ϕ0 is the boundary value of the field ϕ, which is the source J mentioned above. From this

relation, one can compute the two-point correlation function. In doing this, one needs to first

solve the equation of motion (eom) for the bulk field to get the extremum. Then evaluate the

action on this solution. Integrating by parts, one finds that the action becomes the form

5D action|boundary =

∫
dzd4x (eom + ∂z(...)) , (3.2.17)

so the action is determined by a surface term on the AdS boundary. This will give the RHS of

eq. (3.2.16). Differentiating this action twice with respect to the boundary fields ϕ0 one gets

the two-point correlation function

⟨O1(x1)O2(x2)⟩CFT, connected = − δ2Ssugra
δϕ01(x1)ϕ

0
2(x2)

. (3.2.18)

3.3 A Top-Down Model: D3/D7

N D3-branes manifest an SU(N) gauge symmetry in the bulk, where the worldvolume gauge

fields transform as the adjoint representation of the SU(N) gauge group. This system however

doesn’t contain matter fields in the fundamental representation, which is essential if we were to

4Notice that this relation is derived in the euclidean space. For a Lorentzian space the factor in front of the
action S is i.
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construct a realistic QCD(-like) theory. To include the quarks and the flavour symmetry, it’s

intuitive to add another set of D-branes. These D-branes can not be D3-branes, otherwise the

implementation just extends the SU(N) to another SU(N ′). It was pointed out in [24] that such

a set of D-branes must cover the world-volume of the D3-stacks. Also, the new Dp-branes should

have extra dimensions extending to the directions transverse to the D3-stack such that scalar

fluctuations are present. Within the type-IIB string theory, this means only the Dp-branes with

p odd and 3 < p < 9 can be considered. Since D9-branes are space-filling, they cannot give rise

to scalar fields to allow dual meson states. The D5-branes leads to the so-called defect theory

[117], which is also ruled out. Therefore, the unique choice of adding flavors with D-branes is

using the D3-stacks embedded in the worldvolume of the D7-branes. Usually the D7-branes

are called D7-probes, i.e. the number of flavour Nf should be much smaller than the number

of color Nf ≪ Nc. Here Nc is the number of color, it is used interchangeably with N in the

following text to refer to the number of D3-branes. This is called the probe limit. In this limit,

the back-reaction of the D7-probe on the background D3-stack is negligible. This corresponds

to the quenched approximation in lattice QCD, where in calculating the fermion interactions,

the gluons are taken into account, but the fermions don’t affect the gluons.

D-branes t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × × − − − − − −

D7 × × × × × × × × − −

Table 3.2: World volume of D-branes in 10D spacetime. × marks the longitudinal directions where
− marks the transverse directions.

After adding the D7-probe, the open strings between the D7- and D3-branes transform in the

fundamental representation of SU(Nc). The open strings between the D7-branes are in the ad-

joint representation of the SU(Nf ). These states have two flavor indices, therefore they are dual

to the composite states (like mesons in the QCD). The length of the D3-D7 strings determines

the quark masses. This construction is the D3/D7-probe setup [24, 29, 30], which is a relatively

simple top-down model that was build on top of the most intensively studied AdS5/CFT4 cor-

respondence. The implementation of D7-probe will break the N = 4 SYM theory in the dual

theory to N = 2 SYM. The N = 2 hypermultiplet transform in the fundamental representation

of SU(N), contains two complex scalar fields ϕm and two Weyl fermions with opposite chirality

ψ±. The spectrum of this model with a displacement between the D3-stack and the D7-brane is

first calculated in [30]. In the following we will review the construction of this model in [30], and

summarize briefly the results that are relevant to our research. This section will be restricted

to the bosonic states. For implementation of fermionic states in D3/D7, see [31].
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The model contains N D3-branes and only one D7 flavor brane. If the D7-brane coincides

with the D3-stack, the R-symmetry of N = 4 SYM is broken to SU(4) ∼ SO(6) → SU(2)R ×

SU(2)L×U(1)R. The R-symmetry is SU(2)R×U(1)R in this case. If the D7-brane is separated

from the D3-stack in the 8, 9, i.e. the directions transverse to the D7-brane, then this symmetry

group is further broken down to SU(2)R. In this case, the induced metric is

ds2 =
ρ2 + L2

R2
dxµdxµ +

R2

ρ2 + L2
dρ2 +

R2ρ2

ρ2 + L2
dΩ2

3, (3.3.1)

where µ = 0, ..., 3, r2 = L2 + ρ2, L2 = |Y⃗ |2 and Y i with i = 1, ..., 6 are the coordinates of

the 4,..,9 directions. This metric is asymptotically AdS5 × S3. Note that were the D7-brane

coincides with the D3-brane, we will have |Y⃗ | = r. The corresponding dual field theory is

conformal invariant.

The dynamics of the open strings on the D7-brane are described by the DBI-action of the

D7-brane

SD7 = −µ7
∫
d8ξ
√
−det(P [G]ab + 2πα′Fab) +

(2πα′)2

2
µ7

∫
P [C(4)] ∧ F ∧ F. (3.3.2)

Here Gab is the bulk metric, P is the pullback of the bulk field to the brane’s world volume,

µ7 = [(2π)7gsα
′4]−1 is the D7-brane tension. C(4) = r4

R4dx
0 ∧ dx1 ∧ dx2 ∧ dx3 is the Ramond-

Ramond (RR) potential. For a non-zero separation L, embed the D7-brane as

Y 5 = 0 + 2πα′χ, Y 6 = L+ 2πα′φ, (3.3.3)

where Y 5,6 are the two transverse directions 8, 9. χ and φ are the corresponding scalar fluctua-

tions of the open strings in these two directions. The dynamics of the scalar fields are described

by the Lagrangian

L ≃ −µ7
√

−det gab

(
1 + 2(Rπα′)2

gcd

r2
(∂cχ∂dχ+ ∂cφ∂dφ)

)
, (3.3.4)

gab is the induced metric. These two scalars are degenerated, represented below with Φ, and

have the same equation of motion

∂a(
ρ3
√

det g̃

ρ2 + L2
gab∂bΦ) = 0,

→ R4

(ρ2 + L2)2
∂µ∂µΦ +

1

ρ3
∂ρ
(
ρ3∂ρΦ

)
+

1

ρ2
∇i∇iΦ = 0,

(3.3.5)
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where g̃ab is the metric of the three sphere S3, i runs over the directions of the S3. This equation

can be solved using separation of variables, where one writes the solution as

Φ = ϕ(ρ)eik·xY l(S3), ∇i∇iY l = −l(l + 2)Y l, (3.3.6)

with Y l(S3) the spherical harmonics on S3. Redefine the coordinate and factors to

ϱ =
ρ

L
, M̄2 = −k

2R4

L2
, y = −ϱ2, (3.3.7)

one can rewrite the eom in the second line of eq. (3.3.5). Together with the ansatz

ϕ(ϱ) = ϱl(1 + ϱ2)−αP (α), (3.3.8)

we arrive at a general solution

P (y) = F (a, b; c; y),

→ϕ(ρ) = ρl(ρ2 + L2)−αF (−α,−α+ l + 1; l + 2;−ρ2/L2),
(3.3.9)

where F (a, b; c; y) is the standard hypergeometric function (we omit the determination of the

coefficients a, b, c here, they are directly given in the solution). Several criterion need to be

fulfilled for this general solution to be a physical solution — the regularity at origin, the nor-

malizability [113, 118] in the UV and reality of the solution. These conditions constraint the

final solution to be

ϕ(ρ) =
ρl

(ρ2 + L2)n+l+1
F (−(n+ l + 1),−n; l + 2;−ρ2/L2), (3.3.10)

where −α+ l + 1 = −n, n = 0, 1, 2, .... The 4D spectrum is

Ms(n, l) =
2L

R2

√
(n+ l + 1)(n+ l + 2), l ≥ 0. (3.3.11)

The gauge fluctuations are analyzed in the same way, but the discussion is more subtle. We omit

the detailed derivations of the gauge fields’ fluctuations here but to summarize the bosonic field

content in table table 3.3. Note that the gauge bosons have three scalar fluctuations ϕ±I , ϕIII

and one vector fluctuation AµII . Also note that fields are characterized by their representations

under SU(2)R×SU(2)L, where j1,2 are the corresponding spins. Their dual operators must have

the same quantum numbers and the corresponding conformal dimension ∆. For derivations see
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Type (j1, j2) M2(n, l) ∆ O

2 scalars ( l2 ,
l
2) M2

s = 4L2

R4 (n+ l + 1)(n+ l + 2), n ≥ 0, l ≥ 0 l + 3 MAl
s

1 scalar ( l2 ,
l
2) M2

III = 4L2

R4 (n+ l + 1)(n+ l + 2), n ≥ 0, l ≥ 1 l + 3 J 5l

1 scalar ( l−1
2 , l+1

2 ) M2
I,+ = 4L2

R4 (n+ l + 2)(n+ l + 3), n ≥ 0, l ≥ 1 l + 5 CIl

1 scalar ( l+1
2 , l−1

2 ) M2
I,− = 4L2

R4 (n+ l)(n+ l + 1), n ≥ 0, l ≥ 1 l + 1 CIl

1 vector ( l2 ,
l
2) M2

II = 4L2

R4 (n+ l)(n+ l + 2), n ≥ 0, l ≥ 0 l + 3 J µl

Dual Operators

MAl
s = ψ̄iσ

A
ijX

lψj + q̄mXA
V X

lqm, i,m = 1, 2

J (µ,5)l = ψ̄αi γ
(µ,5)
αβ X lψβi + iq̄mX lD(µ,5)qm − iD̄(µ,5)q̄mX lqm, µ = 0, 1, 2, 3

CIl = q̄mσImnX
lqn

Table 3.3: The bosonic field content of the D3/D7 top-down model and their dual operators O.
(j1, j2) are the spins under SU(2)R × SU(2)L. ∆ is the scaling dimension of the operators in the
dual field theory of the D3/D7 model. qm and ψi are the fields in the fundamental hypermultiplet
when writing N = 2 SYM theory in terms of N = 1 superspace formalism. σI

mn, I = 1, 2, 3 are the
Pauli matrices, X l is the symmetric traceless operator insertion X{i1 ...Xil} of l adjoint scalars Xi

with i = 4, 5, 6, 7. Summarized from [30, 119]

[30, 119], we only list the operators in the table.

The fermionic part is analyzed in [31]. This is beyond the scope of this thesis, the fermionic

sector isn’t summarized in this table. For introducing fermions in AdS/CFT, the relevant

discussions see also [120–129].

To complete the discussion, we mention briefly at the end of this section another top-down

approach to the QCD model, the D4/D8/D8 setup [32, 33]. This model discussed another D-

brane structure within the type-IIA string theory. The action is actually non-abelian, but the

quark masses are set to be the same. Fermions are also added, in this case they share the same

form as the Skymer model, and the fermions, which are dual to the baryons in the field theory

are the skymions. Further discussion on the baryons in this model can be found in [34–38] for

top-down and [38, 130] for bottom-up.

3.4 Confinement

The D3/D7 model introduced in the last section still has supersymmetric dual field theory.

To approach a realistic QCD (-like) theory using the holographic language, the SUSY must

be broken. Also, QCD as a strong interacting non-Abelian gauge theory is different from the

Abelian theory in two aspects. At low energies, no single quark is observed experimentally.
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They always form a colorless bound state bounded by the gluons. This is the color confinement,

in that a qq̄ potential isn’t a Coulomb type as in the QED case, but scales with the separation

L of the quark and anti-quark pair — V (L) ∝ L. The other aspect is that the chiral symmetry

is spontaneously broken giving rise to bound states (pNGBs) like the QCD pions. Both of these

two aspects are not present in the model introduced before.

In this section we review the introduction of confinement in holographic models by the Constable-

Myers background [131] and the spontaneous chiral symmetry breaking realized on top of this

model [25]. In the end we will introduce shortly another construction to implement confinement

and chiral symmetry breaking by turning on the magnetic field. This is the source of the dilaton

flow that is mimicked in the bottom-up model in the research part in chapter 4. For a systematic

review on confinement and chiral symmetry breaking in gauge/gravity duality see [108, 119]

In the QCD, to study the quark-antiquark potential, one needs to calculate the expectation

value of the Wilson loop ⟨W ⟩ [132]

V (r) = lim
T→∞

1

iT
ln ⟨Ω|TrW |Ω⟩ , (3.4.1)

where Tr traces over color and

W = P

{
exp

[
igs

∮
C
AaµT

a
ijdx

µ

]}
. (3.4.2)

P{...} is the path ordering, C is the integration contour circling a rectangle with edges of

Euclidean time T and spatial separation of quarks L. For confining theory, the potential should

scale linearly with the separation L, which translates to the criteria that the Wilson loop should

follow an area law

V ∝ L→ ln⟨W ⟩ ∼ TL. (3.4.3)

Similar area law is also expected in signaling confinement in holographic models. The holo-

graphic version of Wilson loop is first calculated in [133]. The idea is to take first a stack of

N + 1 coincident D3-branes. If put one brane of them to be infinitely far away, then the string

attaching to the rest N D3 branes and the single D3 brane will acquire a mass. Such a string

initially is dual to a “W-boson”. But since the single D3-brane is brought infinitely far way,

the U(1) essentially decouples from the rest U(N) and the string connecting the two realizes a

“quark” that transforms in the fundamental representation of the U(N) gauge group. Two such

strings with different orientations realize the quark and antiquark.
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The quark-antiquark potential is derived from the renormalized Wilson loop5, which shows that

the energy of the configuration is

E = −
4π2(2g2YMN)1/2

Γ(14)4L
, (3.4.4)

with L the separation of the quark-antiquark pair. It was shown that the quark and anti-quark

strings will join to become a single string since in this case the energy is lowered. Moreover, as

the quark and anti-quark are separated further apart, the joint string will dip further into the

interior of the AdS space.

The simple model in [133] doesn’t show confinement, as can be seen from the potential, it is

essentially of Coulomb type. This is due to the fact that the dual theory is still conformal

invariant. It was then suggested in [129] that a thermal AdS spacetime could lead to a confining

theory by compactifying an extra dimension and setting non-supersymmetric boundary condi-

tions (thermal black hole). The criteria in this case is that the glueball spectrum has a mass

gap, i.e. the solutions only accepts k2 ≥ 0, with k the four-momentum of the bulk field. This

construction is then studied in [134–146]. The main issue with this proposal is to decouple the

fermions and the scalars in the valid range of supergravity approximation. Another possibility

is to modify the interior of the AdS spacetime, by inserting a barrier like a hard wall (definition

see section 3.5), a brane etc., such that the quark-antiquark string cannot dip further into the

deep interior of the AdS space, but to stretch along the direction of the barrier. This could be

done by the so-called GPPZ flow [147, 148] in a 5D N = 8 gauged supergravity, or by a dilaton

flow [149] in a non-supersymmetric background in the IIB string theory. Similar constructions

see also [26, 150–157]. In the following we will focus on the Constable-Myers background. It was

shown that in certain parameter range, the theory defined in the background has confinement.

3.4.1 Constable-Myers Background and Chiral Symmetry Breaking

The Constable-Myers background [131], along the lines of the constructions [149–156], is a

family of IIB supergravity solutions that contains two extra scalar fields (comparing to the bulk

scalar fields), i.e. the dilaton and an S5 volume scalar. In the Einstein frame, the solution is

ds2 =H−1/2

(
w4 + b4

w4 − b4

)δ/4 3∑
j=0

dx2j +H1/2

(
w4 + b4

w4 − b4

)(2−δ)/4
w4 − b4

w4

6∑
i=1

dw2
i (3.4.5)

5Since the integral contains contributions from the mass of the infinitely heavy “W-boson”, the Wilson loop is
renormalized with this contribution subtracted. Details see [133].
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where

H =

(
w4 + b4

w4 − b4

)δ
− 1, w2 =

6∑
i=1

w2
i . (3.4.6)

b is a parameter that determines the size of the deformation δ = R4/(2b4), and r is the AdS

radius6. Here we use the notation in [25] for later convenience. The Constable-Myers’ notation

is related to this one by redefining the r in Constable-Myers’ notation in terms of w

dw

w
≡ r2d(r2)

2(r4 + b4)
→
(
w

w0

)4

= r4 + b4. (3.4.7)

The integration constant w0 is set to 1 for b = 0. This family of solutions is asymptotically

AdS5 × S5 and breaks both the supersymmetry and conformal invariance.

The dilaton and the four-form are

e2ϕ = e2ϕ0
(
w4 + b4

w4 − b4

)∆

, C(4) = −1

4
H−1dt ∧ dx ∧ dy ∧ dz, (3.4.8)

where the exponent satisfy ∆2 + δ2 = 10. This family of solutions contains a naked singularity

at w2 = b2. Understanding the physics in this region requires the full string theory. How-

ever, the main interesting features can be obtained by studying the parameter space where the

supergravity approximation is valid.

For convenience, introduce ρ and define
∑4

i=1 dw
2
i = dρ2 + ρ2dΩ2

3, the radial coordinate is then

w2 = ρ2 +w2
5 +w2

6. Such a deformation is caused by the presence of operators like ⟨Tr(F 2)⟩ in

the dual field theory, which breaks the supersymmetry. In this background, the quark-antiquark

potential is linear in the length of separation of the quark-antiquark pair L [131]

V (L) ≃ Σ
δ−|∆|

4δ

2πα′
√

1 − Σ
L, Σ =

|∆| − δ

|∆| + δ
. (3.4.9)

The glueball spectrum of the five-sphere fluctuation shows a mass gap. Both of these results

signal confinement in the dual field theory.

To realize a chiral symmetry breaking in the Constable-Myers background [25], notice that the

R-symmetry U(1)R from the rotational symmetry in the two transverse directions w5,6 (i.e. the

Y5,6 in the last section) can be taken as the large N limit of the axial U(1)A. In the large N

6Here we replace the L in the original notation with R to be consistent with the former notations. The same
replacement is also performed for ∆x → L such that one can identify the L here with the one in the last section.
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limit, U(1)A is not anomalous. The D7-brane DBI action is

SD7 = −µ7
∫
d8ξϵ3e

ϕG(ρ, w5, w6)
[
1 + gabg55∂aw5∂bw5 + gabg66∂aw6∂bw6

]1/2
, (3.4.10)

where µ7 is the D7-brane tension, ϵ3 is the determinant factor of S3, and the determinant of

the metric is

G(ρ, w5, w6) = ρ3
(
(ρ2 + w2

5 + w2
6)2 + b4

) (
(ρ2 + w2

5 + w2
6)2 − b4

)
(ρ2 + w2

5 + w2
6)4

. (3.4.11)

The ground state is set to w6 = w6(ρ) and w5 = 0, and w6(ρ) satisfies

d

dρ

[
eϕG(ρ, w6)√
1 + (∂ρw6)2

(∂ρw6)

]
−
√

1 + (∂ρw6)2
d

dw6

[
eϕG(ρ, w6)

]
= 0. (3.4.12)

Looking for a solution where w6 asymptotes to

w6 ∼ m+
c

ρ2
. (3.4.13)

Rotate w5,6 such that the kinetic terms are canonically normalized. This allows one to get the

mass dimension of the dual operators. One finds that m has dimension 1, corresponds to the

quark (fermion) mass. c has dimension 3, corresponds to the vev ⟨ψ̄ψ⟩ of fermion bilinear.

The Constable-Myers background contains a naked singularity, for m = 0 there is an exact

solution that goes into the singularity. Since this is not in the valid range of the background,

this solution is not trustworthy. However, there is a second solution when m = 0 with c = 1.85,

see fig. 3.2(b). The solution lies distance away from the singularity, which shows that the

chiral symmetry is broken for all values of m. One subtlety is choosing the correction solution.

Given that the radial direction corresponds to the energy scale, the solutions that intersect the

semicircle in the ρ − w6 plane with the constant radial distance cannot be interpreted as an

RG-flow, therefore only the “good” solution in fig. 3.2(a) is accepted.

If the chiral symmetry is broken, there must be Goldstone bosons associated with the broken

symmetry. Here the broken symmetry is U(1)R, therefore one GB is expected. This is achieved

by rotating the two transverse directions w5, w6 with exp(iϵ) into the basis where the new

fluctuations in these two directions correspond to a radial fluctuation w6 and a phase w5 =

ϵ c
ρ2

sin(k · x), with k the four-momentum. Solving their eoms to get the spectrum, the mass of

w5 asymptotes to zero when m → 0 and for small m it’s mass scales with
√
m as expected in

QCD. This is the Goldstone boson. The other state w6, its mass is larger than the mw5 . It
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Figure 3.2: Left: three types of solutions. The “bad” solution intersects the semicircle twice thus
cannot be an RG-flow. The “ugly” solution goes into the singularity where the supergravity approx-
imation is no more valid. Therefore only the “good” solution is accepted. Right: solutions with
varying “quark” mass m, the vev c is read off from the UV asymptotics . There is a non-vanishing
vev c when m = 0 which demonstrates chiral symmetry breaking for all cases. The solutions are
repelled from the singularity due to the chiral symmetry breaking. Both plots are taken from [25].

corresponds to the fluctuation in the radial direction, like a σ meson in QCD.

3.4.2 Turn on a Magnetic Field

Another possibility to introduce chiral symmetry breaking is by turning on a magnetic field,

based on a D3/D7 setup [27]. The D3-stack gives rise to the AdS5×S5 geometry with the metric

ds2 =
ρ2 + L2

R2
dxµdx

µ +
R2

ρ2 + L2

(
dρ2 + ρ2dΩ2

3 + dL2 + L2dϕ2
)
, (3.4.14)

where µ = 0, ..., 3, dΩ2
3 is the S3 metric, L and ϕ are the polar coordinates in the transverse R2

(8,9 directions). The D7-brane is embedded at

ϕ = const, L = L(ρ). (3.4.15)

Now introduce a magnetic field along some directions of the D3-brane’s world volume

B(2) = Hdx2 ∧ dx3. (3.4.16)

This will introduce a Chern-Simons term to the D7’s DBI action

S = −µ7
∫
d8ξe−Φ

[
−det(Gab +Bab + 2πα′Fab)

]1/2
+ 2πα′µ7

∫
F(2) ∧ C(6), (3.4.17)
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with µ7 the D7 brane tension. a, b = (0, ..., 7) are the Lorentz indices on the D7 world volume,

Gab is the induced metric and Bab is the induced magnetic field, Fab is the world volume gauge

field. To the first order in α′, the equations of motion set a constraint for the six-form C(6).

The valid ansatz for C(6) is found to be

dC(6)L01ρψαβ =
µ7κ

2
0

π
H

ρ3R4

L(ρ2 + L2)2
Θ(L− L0(ρ)) sinψ cosψ, (3.4.18)

where κ20 = 2π/µ7 and 0, 1, 2, 3, ρ, ψ, β, γ are the D7 world-volume indices. This contribution

breaks the supersymmetry of the probe D7-brane in this model. Since the probe doesn’t back-

react on the D3, one has essentially a SUSY conserved supergravity background plus a SUSY

broken probe theory.

The D7-brane embedding L0(ρ) is solved from the equation of motion

∂ρ

(
ρ3

L′
0√

1 + L′2
0

√
1 +

R4H2

(ρ2 + L2
0)

2

)
+

√
1 + L′2

0√
1 + R4H2

(ρ2+L2
0)

2

2ρ3L0R
4H2

(ρ2 + L2
0)

3
= 0, (3.4.19)

where L′
0 = ∂ρL0(ρ). This equation asymptotes to the equation of AdS5× S5 background in the

UV in the limit of vanishing H. Thus the UV asymptotics is L0(ρ) = m + c/ρ2. For a weak

magnetic field H ≪ m2/R2, the vev is found to be

⟨ψ̄ψ⟩ ∝ −c = −R4

4m
H2, (3.4.20)

which shows that the condensate is a function of the magnetic field H. In general, one finds a

non-vanishing vev c associated with the mass m even when m = 0. This shows that the chiral

symmetry is indeed spontaneously broken in this construction.

3.5 AdS/QCD

The models introduced in the last sections are the top-down models, they start with the full

string theory, consider the full supersymmetry. The calculations are usually complicated and

the model structures are constraint by the symmetry patterns that can be realized by the D-

branes. In contrast to the top-down models which starts from the string theory and approaches

the QCD-like theory, the bottom-up models are developed [39] which constructs the model

in the reversed direction, see also [158–161]. The model considers a single space-filling brane

in the AdS space. This single brane is taken effectively as the flavor-brane with a SU(Nf )
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flavor symmetry. The action is like a holographic version of the chiral perturbation theory,

which manifests a SU(Nf )L × SU(Nf )R chiral symmetry. The longitudinal part of the axial

vector mixes with the GB where the vector are independent of the other fields. This shows

by construction that the SU(Nf )L × SU(Nf )R symmetry is spontaneously broken down to the

SU(N)V . Using the AdS/CFT correspondence the meson spectrum and decay constants can

be calculated. The results are at 10-15% level comparing to the experimental values [39].

The model inserts an IR and a UV cutoff by hand, thus is called hard-wall model. It is a

confining theory given that there’s an IR wall that the fluctuations cannot access. It takes

essentially an AdS slice, with the metric

ds2 =
1

z2
(−dz2 + dxµdxµ), ϵ < z ≤ zm, ϵ→ 0, (3.5.1)

in Poincaré coordinates. The action considers only a scalar field X, and the gauge fields AL,

AR dual to the left and right currents in the gauge theory

S =

∫
d5x

√
gTr{|DX|2 + 3|X|2 − 1

4g25
(F 2

L + F 2
R)}, (3.5.2)

where g is the determinant of the metric, g5 is the 5D gauge coupling and FL/R are the field

strength tensors. DX = DMX = ∂MX − iAML X + iXAMR is the covariant derivative. The

model manifests a global chiral symmetry SU(Nf ) × SU(Nf ) breaking down to SU(Nf )V ,

thus the fields are matrix valued objects. Consider different fluctuations, one obtains the 5D

gravity theory equations of motions. To solve them, one seeks a plane wave solution of the form

f(z, xµ) = f(z)eikx, for f a general field.

On the boundary, one identifies the generating functionals of the dual theories. The f0 is the

value on the boundary which is sourced by the 5D SUGRA field f(z, xµ). Using the relation

eqs. (3.2.15) and (3.2.16), one can differentiate the generating functional (obtained by evaluating

the action on the solution of each field) with respect to the boundary field twice, to get the

corresponding correlator. For example the action, when evaluated on the solution of the vector

fluctuation is a boundary term

S = − 1

2g25

∫
d4x

(
1

z
V a
µ ∂zV

µa

)
z=ϵ

. (3.5.3)

Differentiating twice with respect to the solution on the boundary, one gets the vector-vector
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correlator

ΠV (−q2) = − 1

g25Q
2

∂zV (q, z)

z

∣∣
z=ϵ

, (3.5.4)

where Q2 = −q2, V (q, z) is the piece in the vector solution that contains the dependence

of the 5th dimension. For large Euclidean momentum Q2, this function has the expansion

V (Q, z) = 1 + Q2z2

4 ln(Q2z2). To match the coupling strength of the dual theories, one matches

the vector-vector correlator obtained from the gravitational side with the one that is calculated

using perturbation theory on the field theory side, i.e.

ΠV (Q2)|AdS = − 1

2g25
lnQ2 ≡ ΠV (Q2)|QFT = − Nc

24π2
lnQ2. (3.5.5)

Nc is the number of colors. This gives the 5D gauge coupling

g25 =
12π2

Nc
. (3.5.6)

From this expression we see that this coupling is fixed by the number of the colors.

Once the correlator is calculated, one can compute the decay constants of the mesons. This is

given by7

F 2
ρ =

1

g25
[ψ′
ρ(ϵ)/ϵ]

2 =
1

g25
[ψ′′
ρ(0)]2, (3.5.7)

where ψρ(z) is the solution of the vector equation of motion. Fρ is the decay constant of the ρ

meson in this model.

This model has initially four free parameters: g5, mq, the vev of the quark bilinear σ and the

IR cutoff zm. Matching the vector-vector correlator from the gravitational side to the gauge

theory one kills g5, leaving only three free parameters. Matching the ρ meson mass fixes zm.

The π decay constant and the pion mass mπ are matched to give mq and σ. In the end, with

such a simple setup incorporating an extra dimension, this model is able to get a prediction on

the other physical quantities at 10-15% level.

However the hard-wall models have some drawbacks, the obvious one is that the confinement is

implemented by hand instead of generated dynamically. This justifies the name of the hard-wall

model. However, the (IR) scales can be generated dynamically. This type of models are called

the soft-wall model, see [162, 163]. In the next section, we will review a model along this line,

where one can see that the vacuum solution has a lower bound that is generated dynamically.

7For derivations see the original paper [39].
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3.6 AdS/YM

In this work we focus on the bottom-up model from [53], earlier constructions see [164, 165] and

[166–171]. Based on the model from [39], this model considers the dual theory to be a general

Yang-Mills theory. The warp factor that is usually adopted in the soft-wall models to deform

the geometry in this case originates from the top-down D3/D7 model. Thus the confinement is

generated dynamically, whose origin can be traced back to the top-down construction.

The gravitational side of this model lives in the AdS5 spacetime

ds2 = r2dxµdx
µ +

dρ2

r2
, (3.6.1)

where r is the holographic radial direction. It’s relation with the ρ is defined to be r2 = L2 +ρ2,

where L (or later L0) in the top-down model sets the position of the D7 brane in the transverse

directions. It corresponds to the vacuum configuration in this case.

The action is

Sboson =

∫
dρ d4x ρ3Tr

{
1

r2
(
DMX

)†
DMX +

∆m2

ρ2
|X|2 +

1

2g25

(
F 2
L + F 2

R

)}
, (3.6.2)

where X = L(ρ)eiπ is the scalar fluctuation matrix, L(ρ) is the vacuum. DMX = ∂MX−iALX+

iXAR is the covariant derivative, with the Lorentz index M = t, x, y, z, ρ. The field strength

tensors FL and FR represent the gauge symmetry SU(Nf )L×SU(Nf )R mimicked by the single

D-brane. In the actual calculations, the field X and AM are matrices in the flavor space like

in the chiral perturbation theory, i.e. if AL realizes gauge fields of an SU(N) symmetry, then

one needs to write AL = AiLτ
i, with τ i the SU(N) generators. But the flavors are degenerated

here, making the outcome essentially a degenerate abelian theory. The gauge fields for the left

and right symmetries are normalized to be

AL =
1

2
(V +A) , AR =

1

2
(V −A) . (3.6.3)

In this way, the gauge symmetry in the bulk is actually the flavor symmetry of the theory. The

gauge bosons, which are dual to vector bound states in the dual field theory, are dynamical

fields in this model. This is a feature of the hidden local symmetry, and is a common feature

shared by the AdS/QCD models [33, 39, 172]. Notice two differences comparing to the original

AdS/QCD model. One is that this model has ρ3 as
√
−g, this comes from the top-down model.
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This insures the correct UV behaviour for the vacuum. The other one, which is also the main

difference, is the term ∆m2(ρ). This term acts like the scalar mass term in a chiral Lagrangian,

but in this model it introduces the running of the holographic RG flow8. To see how this

works, we start with the vacuum L. Turning off all the fields in the action, and apply the

Euler-Lagrange equation, one finds the eom of the vacuum is9

∂ρ
(
ρ3∂ρL(ρ)

)
− ∆m2L(ρ) = 0. (3.6.4)

When setting ∆m2 = 0, the vacuum has a usual solution of the form

L(ρ) → m+
c

ρ2
. (3.6.5)

If turn on ∆m2 ̸= 0, then the asymptotic behavior changes to

L(ρ) → mργ +
⟨O⟩
ργ

, (3.6.6)

where the relation between ∆m2 and γ is

∆m2 = γ(γ − 2). (3.6.7)

Related to the scaling dimension of the operator, γ is the anomalous dimension of the quark

mass. In QCD this is a running parameter, and in holographic model we introduce the running

of the gauge theory through this relation which reproduces the effect of a running dilaton in

the top-down model. The two-loop result of running coupling for multi-representational matter

is adopted in this case

µ
dα

dµ
= −boα2 − b1α

3, (3.6.8)

where the β-functions b0,1 are

b0 =
1

6π

(
11C2(G) − 2

∑
R

T (R)Nf (R)

)
,

b1 =
1

24π2

(
34C2

2 (G) −
∑
R

(10C2(R) + 6C2(R))T (R)Nf (R)

)
.

(3.6.9)

In the above equations, R is the representation of the matter field, C2 is the quadratic Casimir,

8The introduction of ∆m2 and the running of strong coupling isn’t trivial. There are several discussions needed
before arriving at this construction. What we introduced in the following is the final recipe to implement the
gauge dynamics. To not digress too much in the main text, we summarize the background ideas in appendix B.

9In the following we omit the ρ dependence of ∆m2. As can be seen later, it depends logarithmically on r.
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G is the adjoint representation, Nf is the number of Weyl fermion flavors, d(R) is the dimension

of quark’s representation. For the running of the anomalous dimension γ, the 1-loop result is

used

γ =
3C2(R)

2π
α. (3.6.10)

Since this is a scalar theory defined on the AdS spacetime, there exists a BF bound at ∆m2 = −1

[164]. Given the relation eq. (3.6.6), one can expand it for γ small

∆m2 = −2γ. (3.6.11)

This means, if γ runs below the value 1
2 , then the BF bound of the scalar fields is violated

and the scalars’ potential develops an instability. The term ∆m2 represents the effects of a

dilaton induced by the deformation of the geometry [165]. Together with the ρ3 factor from the

top-down
√
−g, they function in the same way as the warp factor in the soft-wall AdS/QCD

models. But in this model they have a proper origin from the top-down. Note that ∆m2 must

depend on r instead of ρ, i.e. it must be a function of L to pass from the chiral symmetry

broken phase below the BF bound to the stable phase above the BF bound [165].

To study the dynamics of the fluctuations, we turn on them separately. To get the scalar

fluctuation, let X = L0(ρ) + S for S(ρ) being the scalar fluctuation. Expanding the scalar

potential to ∂∆m2

∂L , the eom for scalar is found to be

(
∂ρ
(
ρ3∂ρ

)
− ρ∆m2 − ρ

∂∆m2

∂L
|L0 +

M2
s ρ

3

r4

)
S(ρ) = 0. (3.6.12)

The vectors V i, where i is the component index, are

(
∂ρ
(
ρ3∂ρ

)
+
M2
V ρ

3

r4

)
V (ρ) = 0. (3.6.13)

To compute the NGBs and the axial-vector Ai,µ, set the scalar fluctuation matrix to X =

L0(ρ)eiπ, with π = πiτ i the Goldstone matrix and τ i, i = 0, 1, .., 3 are the identity matrix

(i = 0) and the three Pauli matrices. Writing the axial-vector in transverse and longitudinal
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parts Aµ = Ai,µ⊥ + ∂µϕi, from the eom of Aµ one gets

(
∂ρ
(
ρ3∂ρ

)
− g25

ρ3L2
0

r4
+
M2
Aρ

3

r4

)
Aµ(ρ) = 0

∂ρ
(
ρ3∂ρϕ

)
− g25

ρ3L2
0

r4
(π − ϕ) = 0

q2∂ρϕ− g25L
2
0∂ρπ = 0.

(3.6.14)

The last two equations give rise to the eom for GBs

∂ρ
(
ρ2L2

0∂ρπ
)

+
M2
πρ

3L2
0

r4
(π − ϕ) = 0. (3.6.15)

This is consistent with the GB eom derived directly from the Lagrangian using the Euler-

Lagrange equation.

These equations have non-trivial factors depend on ρ, they can be solved only numerically. One

way to solve them is to use the shooting method. The dynamics of the fields are constraint

by the boundary conditions. Take the scalar field S as an example, in the IR the regularity

condition is imposed, i.e. the first derivative of the field should vanish

IR boundary condition 1: ∂ρS(ρ)|IR = 0. (3.6.16)

In the UV, the fluctuations corresponds to the normalisable modes, which asymptote to 0

rapidly, the fluctuation should thus vanish in the UV

UV boundary condition: S(ρ)|ρ→∞ = 0. (3.6.17)

These two conditions forms a boundary value problem. Using the shooting method, one adds

and extra IR condition

IR boundary condition 2: S(ρ)|IR = 1. (3.6.18)

This extra boundary condition turns the boundary value problem to an initial value problem

associated with each shooting parameter M , i.e the field’s mass in the eoms. Since the solution

of the initial value problem is always unique, in this way one finds a unique solution associated

with the mass M . Applying these boundary conditions, the eoms of the fluctuations can be

solved numerically.

The meson decay constant fπ,V,A are calculated in the similar way as explained in the last

section. In the holographic model, the external source is the non-normalizable term in the UV
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[53]. In the UV, the L0(ρ) ∼ 0 comparing to ρUV , the function that introduces the running also

tends to 0: ∆m2(ρ) → 0. So for the V , A and S fluctuations, they have essentially the same

asymptotics in the UV

∂ρ
(
ρ3∂ρK

)
− q2

ρ
K = 0. (3.6.19)

This equation has the solution [39, 52]

Ki = Ni

(
1 +

q2

4ρ2
ln

(
q2

ρ2

))
, i = V,A, S, (3.6.20)

where Ni are the normalization constants to be fixed by matching to the UV gauge theory [39,

165]

N2
V = N2

A =
g25d(R)Nf (R)

48π2
, N2

S =
d(R)Nf (R)

48π2
. (3.6.21)

The vector decay constant is computed by evaluating the vector-vector correlator ΠV V

F 2
V =

∫
dρ

1

g25
∂ρ(−ρ3∂ρV )KV (q2 = 0), (3.6.22)

where V is the solution of the vector field. The FS and FA are calculated similarly. The pion

decay constant is computed from the ΠAA

f2π =

∫
dρ

1

g25
∂ρ
(
ρ3∂ρKA(q2 = 0)

)
KA(q2 = 0). (3.6.23)

3.7 Double Trace Interaction

By far, the AdS/CFT correspondence covers only the case where the dual theory is of order

∼ TrW (O), where O is a function of a single field and its derivatives. Since it involves just a

single trace term, the operator O is called the single-trace operator. It is useful in the matter

free gauge theories. However, to incorporate a potential for the matter field, a multi-trace

operator which is nonlinear in O is needed. Especially in constructing a dynamic holographic

composite Higgs model that is relevant to the research in this thesis. As we will see later in

section 5.5, the double trace interaction is needed to introduce the EW symmetry breaking on

the boundary.
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3.7.1 Witten’s Double Trace Prescription

The prescription to incorporate the double trace interaction into the AdS/CFT correspondence

is work out by Witten in [173]. The method is effectively very simple. One just needs to modify

the condition on the AdS boundary according to the double trace interaction term. To see this,

consider an action of a scalar field ϕ from a U(N) gauge theory

I =
1

2

∫
r≥0

dd+1x|dϕ|2 +

∫
r=0

ddxW (ϕ, dϕ, ...), (3.7.1)

that lives in the AdSd+1 spacetime in the Poincaré coordinates

ds2 =
1

r2
(
dr2 + dxµdx

µ
)
, µ = 0, ..., d, r ≥ 0. (3.7.2)

r = 0 is the AdS boundary. Then a free scalar ϕ with mass m in the bulk has a solution in the

UV that behaves like

ϕUV → J rd−∆ + ⟨ϕ0⟩r∆, (3.7.3)

where ϕ0 the boundary value of ϕ, and J is the source for the dual operator O of ϕ, ∆ is the

dimension of the operator O. If we now add a boundary perturbation N2W to the Lagrangian,

then the variation of the action with respect to ϕ indicates a boundary condition for ϕ

∫
r=0

ddxδϕ

(
δW

δϕ
− ∂ϕ

∂r

)
= 0 → δW

δϕ
− ∂ϕ

∂r
= 0. (3.7.4)

Let W first be a single trace interaction on the boundary

W =

∫
ddxf(x)O. (3.7.5)

In terms of the AdS/CFT correspondence, this boundary condition is equivalent to

J = f(x) =
δW

δ⟨ϕ0⟩
, (3.7.6)

i.e. the source term is replaced with the derivative of the single trace interaction with respect

to the vev of the boundary field. The upshot is, when perturbing the dual field theory with an

interaction term N2W on the AdS boundary, to calculate physical quantities in the bulk using

the AdS/CFT correspondence, the boundary condition eq. (3.7.6) should be applied.

If now W is a multi trace interaction term on the boundary, i.e. it contains nonlinear terms of
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the operator, then one simply replace the boundary condition with

Ji =
δW (x, ⟨ϕj⟩,.ϕj)

δ⟨ϕi⟩
. (3.7.7)

3.7.2 NJL

Aside from the standard Higgs mechanism, the Nambu-Jona-Lasino (NJL) model [174, 175]

provides another mechanism to reproduce the chiral symmetry breaking. Inspired from the

BCS (Bardeen-Cooper-Schrieffer) theory, the NJL model attempts to explain the condensation

of quarks in a similar manner (the pions are explained to be a nucleon-antinucleon state). The

original model is a toy model, which contains only a kinetic term and a four-fermion interaction

term that respects a chiral symmetry at the Lagrangian level

L = −ψ̄γµ∂µψ + g0
[
(ψ̄ψ)2 − (ψ̄γ5ψ)2

]
. (3.7.8)

Then a Coleman-Weinberg potential as a function of the fermion mass m at one-loop breaks

the chiral symmetry. The observed fermion (nucleon) mass m, thus the bound states’ mass,

becomes a function of the bare coupling constant g0 (NJL coupling), and it grows beyond 0

after the coupling g0Λ
2 crosses the critical value 2π

2π2

g0Λ2
= 1 − m

Λ2
ln(

Λ2

m2
+ 1). (3.7.9)

Here Λ is the UV cutoff. The typical profile one would expect is that the mass starts to grow

drastically after the coupling passes the critical value.

3.7.3 Holographic NJL Interactions

In holographic models, adding an NJL term at the boundary could enhance the chiral symmetry

breaking, if such a breaking is already triggered in the theory [176, 177]. Also, it will introduce

extra explicit breaking sources into the theory. This is especially useful for incorporating the EW

symmetry breaking when constructing holographic composite Higgs models. In the following

we will review how the NJL interaction is embedd in the holographic model, restricted to the

D3/D7 inspired bottom-up model.

To implement the NJL interaction into holographic bottom-up models originated from the

D3/D7 type of models, we follow closely the results in [176, 177]. These results are what we
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will use and extend in the later research part.

What we want to achieve is to add a four-fermion interaction term to the boundary field theory,

such that the vev in the boundary asymptotics of L

L→ m+
c

ρ2
(3.7.10)

is the vev c = ⟨q̄LqR⟩. L is the vacuum of the bulk scalar field. This can be done using Witten’s

prescription by adding an interaction term at the boundary

∆S =
g2

Λ2
UV

(⟨q̄LqR⟩)2 =
m2Λ2

UV

g2
, (3.7.11)

where we identified m = g2

Λ2
UV

⟨q̄LqR⟩ in the last step. g is the NJL coupling, and ΛUV is the

cut-off. Adding this term to the Lagrangian of the dual field theory, variation principle requires

[177]

δS = 0 = −
∫
dρ(∂ρ

∂L
∂L′ −

∂L
∂L

) +
∂L
∂L′ δL

∣∣∣
UV,IR

. (3.7.12)

L is allowed to change, so δL ̸= 0. Then this in turn requires that on the boundary

∂L
∂L′ +

2LΛ2

g2
= 0. (3.7.13)

Knowing that L → m+ c
ρ2

in the UV, here UV is the cutoff scale ΛUV , the above condition is

translated to

m ≈ g2

Λ2
c. (3.7.14)

This is the relation that we want to see in the holographic model in the first place.

Depending on the strength of the coupling, the model experiences a second order phase tran-

sition. For g < gc, the minimum lies at m = 0, so no symmetry is broken. For g > gc, the

minimum is lifted from m = 0 which indicates a symmetry breaking.

However, adding an NJL contribution to a holographic theory doesn’t guarantee a chiral sym-

metry breaking (or generally a symmetry breaking) as always. The holographic model must

have a chiral symmetry breaking triggered already. As is pointed out in [176, 177], if the holo-

graphic model respects SUSY, then adding the NJL contribution won’t change the mass m that

minimize the potential. Only when the SUSY is broken where a chiral symmetry breaking is

manifest does the NJL contribution lift the mass that minimizes the potential above of 0. So

the upshot is, the NJL interaction in the holographic model can only enhance but not trigger a
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symmetry breaking. For that purpose, one must introduce a symmetry breaking mechanism in

advance.
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Chapter 4

Non-Abelian AdS/QCD

In this chapter we start constructing a non-abelian AdS/YM model, based on the ingredients

we reviewed in the last part. There is a non-abelian top-down model based on the D3/D7

construction in [178], where the authors consider the DBI action for Nf coincident D7-branes,

and the non-abelian nature is made obvious by embedding the D7-branes at different positions

in the transverse directions. Such an embedding gives rise to heavy-light bound states stretching

between the D7-branes that are dual to the meson states with different quark contents. These

states are also no more degenerate with the heavy-heavy and light-light states.

By introducing the non-abelian construction, we are able to explain the measured QCD meson

spectrum in more details according to the flavor structure of the quark contents. This property

is also important in composite Higgs model building to realize different symmetry breaking

patterns.

In the following, we will review first the non-abelian D3/D7 top-down model in [178] in sec-

tion 4.1. We then adopt the essential elements from this model to extend the dynamical AdS/YM

model we reviewed in section 3.6 to incorporate the non-abelian gauge structure in the bulk

(flavor structure in the dual field theory). This is done in section 4.2, where we also develop

the numerical tools that will be used through out our calculations. In section 4.3 we use the

non-abelian dynamical AdS/YM model to let it dual to a two flavor QCD on the boundary.

We show two spectra, one with degenerate flavors (mu = md) and the other with flavors made

explicitly different (mu ̸= md). We then move on to the three flavor case, with the flavor struc-

ture mu = md ̸= ms. In each step we compute the meson spectrum and compared it with the

QCD data. Our results show a good agreement with the QCD meson spectrum. This chapter
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is based on the paper we published in [1].

4.1 A Non-Abelian D3/D7 Top-Down Model

The top-down model reviewed in section 3.3 considers essentially only one D7-brane. To realize

a non-abelian gauge symmetry, it’s intuitive to include more D7 flavor branes. Such a model is

constructed in [178], where it describes Nf flavors of N = 2 supersymmetric quark hypermul-

tiplet interacting with the gauge sector of the N = 4 SYM. The global symmetry of the dual

field theory is U(Nf )×U(1)A. We review in this section the essential elements for constructing

the corresponding bottom-up model.

The non-abelian DBI-action for Nf coincident Dp-branes is proposed in [179]

SNf
= −τp

∫
dp+1ξe−ϕSTr

(√
−det(P [Grs +Gra(Q−1 − δ)abGsb] + T−1Frs)

√
detQab

)
,

(4.1.1)

with

Qab = δab + iT [Xa, Xc]Gcb, (4.1.2)

T−1 = 2πα′, τp is the Dp-brane tension. Xa are the directions transverse to the Dp-branes, for

p = 7, a, c = 8, 9. P [ars] is the pull-back of a 10D tensor amn to the world-volume of the branes.

When including the fluctuations and taking the diagonal embeddings, [Xa, Xb] is small. Using

eq. (4.1.2), the pull-back in eq. (4.1.1) is then approximated as

P [Grs +Gra(Q
−1 − δ)abGsb] ≈ Grs +DrX

aDsX
b(Gab − iT [Xc, Xd]GacGbd), (4.1.3)

where

DrX
a = ∂rX

a + i[Ar, X
a], (4.1.4)

is the covariant derivative, Ar are the non-abelian bulk gauge fields. Expanding the action in

[Xa, Xb] and keeping to O(X4), the Nf probe Dp-branes’ action eq. (4.1.1) is approximated by

SNf
= τp

∫
dp+1ξe−ΦSTr

{√
−det(Grs +GabDrXaDsXb + T−1Frs) ×

(
1 − 1

4

(
TGac[X

c, Xb]
)2)}

.

(4.1.5)
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In the following we consider D7-probe. It is embedded in the 10D background [180, 181]

ds210 = eΦ/2
(
r2

R2
A2(r)ηµνdx

µdxν +
R2

r2
dr2 +R2dΩ2

5

)
, (4.1.6)

where Φ(r) is the dilaton field and A(r) is a function that takes different values for non- and

SUSY cases. The induced metric on the D7 world-volume is

ds28 = eΦ/2
{
r2

R2
A2ηµνdx

µdxν +
R2

r2
(
(1 + (∂ρw)2)dρ2 + ρ2dΩ2

3

)}
. (4.1.7)

For D7-branes, the scalar fluctuations are generated in X8 and X9, i.e. the two transverse

directions. In the abelian case, they represent the positions of the D7-brane in these two

directions. When promoted to the non-abelian case, they have the same geometrical meaning

only when the matrices are diagonal. The diagonal ansatz is taken to simplify the computation,

where one takes the metric and coordinates to be diagonal matrices

Xa = diag(La1, . . . L
a
Nf

). (4.1.8)

The contents inside the STr in action eq. (4.1.1) are thus extended to Nf ×Nf matrices. There

is an ambiguity in defining the order of the matrices. The remedy is to surround the action

with a symmetrized trace STr, which is an average over all the permutations of fields at the

same order as a field strength tensor

STr [X1X2, ..., Xn] ≡ 1

n!
(X1X2...Xn +X2X1...Xn + all permutations) . (4.1.9)

The permutation acts on Xi, D
MXi, [Xi, Xj ] and FMN [179]. The convention of STr was first

introduced by Tseytlin in [182], where it was shown that when expending to O(F 4), the non-

abelian DBI action adopting the STr is consistent with the tree-level open string effective action

for the non-abelian vector field. See also [183, 184].

For simplicity, we restrict ourselves in the two-flavor case, i.e. we will have essentially two D7-

branes forming a D7-probe, the gauge symmetry is U(2) gives rise to a U(2) flavour symmetry

in the dual field theory. The fields (matrices) are expressed in the basis of U(2)

τ0 =
1

2

1 0

0 1

 , τ1 =
1

2

0 1

1 0

 , τ2 =
1

2

0 −i

i 0

 , τ3 =
1

2

1 0

0 −1

 . (4.1.10)

Taking the diagonal ansatz for the vacuum and consider general fluctuations, the scalar fields
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X8,9 and the vector fields are written as

X8 = τ iϕ8i ≡ ϕ8, X9 =

L1 0

0 L2

+ τ iϕ9i , AM = AMi τ
i. (4.1.11)

Note that we don’t differentiate between super-/sub-scripts in defining the basis matrices.

eq. (4.1.11) is a valid ansatz since due to rotational symmetry, one can align the D7-branes along

one direction. Geometrically this vacuum configuration means that the D7-probe is embedded

and separated along the 9th-direction at positions L1 and L2. Including these fluctuations, the

radial direction r becomes a matrix in flavor space

r2 = ρ2 + (X8)2 + (X9)2. (4.1.12)

This turns the metric — which is a function of r2 — also into a matrix

Grs →

Grs|r=r11 Grs|r=r12
Grs|r=r21 Grs|r=r22

 , (4.1.13)

where rij denotes the corresponding matrix element of r. Taking the diagonal ansatz, the metric

is essentially a diagonal matrix that is not necessarily proportional to the identity matrix.

Expanding the action in eq. (4.1.5) to O(X2), we obtain the Lagrangian

L = ρ3STr

(
eϕ
[
1 +

1

2
GρρD

rX9†DrX
9 +

1

2
Gρρ∂

rϕ8∂rϕ
8 +

1

4g2
F abFab

+
1

8
G2
ρρ(L1 − L2)

2[(ϕ81)
2 + (ϕ82)

2]

])
. (4.1.14)

The second line is the mass term for the ϕ8 fluctuations, which is not present for the ϕ9 fields.

As indicated in eq. (4.1.11), the vacuums L1 and L2 are taken differently, this shows that the

flavor symmetry U(2) is broken explicitly on the boundary. Such a breaking will cause a Higgs-

mechanism happening in the vector sector, where the longitudinal part of the vector is absorbed

by the scalar fields. This process happens only between the off-diagonal fields f1 and f2, for f

being a general field. The diagonal fields (singlet and the third component of the triplet) mix

into fields dual to ūu and d̄d in the diagonal ansatz. This reflects the fact that in the large N

limit, the flavor symmetry is broken down to U(1) × U(1).

There are three kinds of fluctuations in this model. The scalar fluctuations in the 9th and 8th

directions are dual to scalar mesons and pseudo-scalar mesons (GBs). The vector fields V a and
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the axial-vector fields Aa are dual to the vector/axial-vector mesons in the 4D field theory. Each

of them have four components, which recombines into fu/d = f0±f3 and f12/21 = f1∓if2. They

are dual to the light-light (fu), heavy-heavy (fd) and heavy-light (f12/21, degenerated) meson

excitations. For completeness, and also due to the similarity in the calculations, we derive some

of the Lagrangians and the equations of motion from [178] in appendix A. The calculations in

the later bottom-up model are based on this.

4.2 N = 2 Bottom-Up Non-Abelian Model

In this section we discuss some of essential aspects from the non-abelian top-down model that

will be extended to the bottom-up. We start with the kinetic terms of the vacuum

LD7 = ρ3STr

[
1

2
GρρG

ab∂aX
†∂bX

]
. (4.2.1)

X is the scalar matrix that contains the vacuum and the fluctuations. It combines both the X8

and X9 in the previous section, and it is parameterized non-linearly as a Nf ×Nf matrix

X =

(
L+

∑
k

ξk(x)Tk

)
ei(πa(x)Ta), (4.2.2)

where L is the embedding matrix. T a are the generators of the U(Nf ) symmetry group. ξs and

πs are the 2N2
f scalar and pseudo-scalar fluctuations around the vacuum. The AdS metric Gab

is a matrix also, due to the matrix nature of the coordinate r2 = ρ21Nf
+ L2.

In the bottom-up model, the above kinetic term manifests a chiral symmetry. Under the chiral

transformation, the scalar matrix and the metric transform as

X → U †
LXUR, G→ U †

LGUR, (4.2.3)

where UL and UR are the left and right transformation matrices respectively. The symmetrized

trace deals with the ambiguity of the matrices’ positions, the symmetrization is applied to all

possible permutations that are invariant under chiral symmetry in the action. Since now the

metric is also a matrix in the flavor space, G†
ρρGab transforms as URU

†
R and Gab†Gρρ transforms

as ULU
†
L. These two combinations show up in the action after bring down the indices. In

computing the STr, one inserts the two products in the beginning and in the middle of the

kinetic term respectively and average over these two possibilities.
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In the following we take the diagonal ansatz, the vacuum matrix L is assumed to be real and

diagonal: L = diag(Lu(ρ), Ld(ρ)). Such a configuration leads to two separated equations of

motion when X =diag(Lu, Ld)

∂ρ[ρ
3∂ρLu/d] = 0, Lu/d = mu/d +

cu/d

ρ2
, (4.2.4)

where mu/d are the UV quark masses and cu/d are the operators’ vevs corresponding to the up

and down quark and their condensates in the dual theory respectively.

Deriving these equations require the boundary surface term

Sb =

∫
d4x

∂L
∂L

δLu/d =

∫
d4xρ3δLu/d∂ρLu/d (4.2.5)

to vanish, which is made possible when requiring L′
u/d(IR) = 0 and Lu/d(UV ) = 0.

The kinetic term eq. (4.2.1) has more symmetry than the N = 2 SYM theory in the last section,

i.e. we want to break the chiral symmetry down to the diagonal one. This is done by introducing

the potential in terms of the commutator [X†, X]

V =
1

2
Tr[X†, X]2 = Tr(X†XX†X) − Tr(X†X†XX), (4.2.6)

where the second term breaks SU(Nf )L × SU(Nf )R to U(Nf )V × U(1)A.

We need to also include the bulk gauge fields in the holographic model. The action should then

contain the terms

Lkin = ρ3STr

[
1

2
GρρG

abDaX
†DbX +

1

4g2
GabGcdFacFbd

]
, (4.2.7)

with the covariant derivative

DaX = ∂aX + i[Tm, Tn]V m
a Xn. (4.2.8)

Note that the commutator is calculated before applying the STr.
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4.2.1 Two-Flavor Example 1: Equal Real Masses

We consider first the above construction with degenerate flavors. Then the vacuum is propor-

tional to an identity matrix and the scalar matrix X is expressed as

Xij = mδij + sij + is̃ij , (4.2.9)

where δij is the Kronecker delta. m represents backgrounds’ solution, which is essentially the

UV quark mass m. The radial coordinate is also proportional to unit matrix, so is the metric

matrix too, which takes the form

Gρρ = Gxx = (ρ2 +m2)1Nf×Nf
. (4.2.10)

If we derive the equations of motion for the scalar and vectors, we will end up with 2N2
f copies

of the abelian equation

∂ρ[ρ
3∂ρS] +

M2

(ρ2 +m2)2
S = 0, (4.2.11)

for the scalars S and N2
f copies of the vectors

∂ρ[ρ
3∂ρV ] +

M2

(ρ2 +m2)2
V = 0. (4.2.12)

I.e. this is just a degenerate abelian theory we have seen before.

4.2.2 Two-Flavor Example 2: Split Real Masses

We consider now the two flavor case with two embeddings separated, marked by u, d respectively.

There will be two classes of fluctuations in this case. In the brane picture, one class corresponds

to the open string on a single D7-brane, were it a u- or d-brane. These states will be referred

to as diagonal fluctuations/states in the following, since they are the diagonal elements of the

fluctuation matrix. The other ones correspond to the open string stretching between the u- and

d-brane, they are referred to as the off-diagonal fluctuations.
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Diagonal States

If the flavors are made non-degenerate, the eigenstates in of the diagonal component will corre-

spond to the ūu and d̄d states in the dual field theory, instead of being the singlet and triplet

states under the U(2)V . This is the case for both scalar and vector fields. For example, consider

the scalar fluctuations around the vacuum σu,d. Their holographic action is

S5d =

∫
d4xdρ ρ3

[
(∂ρσu)2 +

1

(ρ2 +m2
u)2

(∂µσu)2 + (∂ρσd)
2 +

1

(ρ2 +m2
d)

2
(∂µσd)

2

]
. (4.2.13)

Their dynamics are described by the equations

∂ρ(ρ
3∂ρσu/d) + ρ3

M2
u/d

(ρ2 +m2
u/d)

2
σu/d = 0, (4.2.14)

where they are solved by taking the plane-wave ansatz σi(ρ, x) = σi(ρ)eiq.x, q2 = −M2
i , i = u, d,

and requiring the fields to vanish in the UV to solve the mass M2
u/d. If we start with another

basis that is an admixture of the current basis (σ, τ) = 1/
√

2(σu±σd), i.e if we are dealing with

coupled equations of motion, the action in this basis is

S5d =

∫
d4xdρ

[
ρ3(∂ρσ)2 +

ρ3

2

[
1

(ρ2 +m2
u)2

+
1

(ρ2 +m2
d)

2

]
(∂xσ)2 + ρ3(∂ρτ)2

+
ρ3

2

[
1

(ρ2 +m2
u)2

+
1

(ρ2 +m2
d)

2

]
(∂xτ)2 + ρ3

[
1

(ρ2 +m2
u)2

− 1

(ρ2 +m2
d)

2

]
(∂xσ)(∂xτ).

(4.2.15)

As shown in [185], for coupled equations, one should seek the solutions with the common plane-

wave ansatz eikx, k2 = −M2. Using the usual Euler-Lagrange equation, we arrive at a set of

coupled equations of motion in this basis

∂ρ(ρ
3∂ρσ) +

ρ3

2

[
1

(ρ2 +m2
u)2

+
1

(ρ2 +m2
d)

2

]
M2σ +

ρ3

2

[
1

(ρ2 +m2
u)2

− 1

(ρ2 +m2
d)

2

]
M2τ = 0,

(4.2.16)

∂ρ(ρ
3∂ρτ) +

ρ3

2

[
1

(ρ2 +m2
u)2

+
1

(ρ2 +m2
d)

2

]
M2τ +

ρ3

2

[
1

(ρ2 +m2
u)2

− 1

(ρ2 +m2
d)

2

]
M2σ = 0.

(4.2.17)

We then impose the boundary conditions for mixed states

σ(IR) = 1, σ′(IR) = 0, τ(IR) = b, τ ′(IR) = 0, σ, τ(UV ) = 0. (4.2.18)

The IR value of one of the field, for example τ(IR) = b is a shooting parameter. By adjusting

the values b and M such that both of the fields vanish in the UV simultaneously, one finds the
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Figure 4.1: We show a numerical method to the solution of the mixed equations, eq. (4.2.16) and
eq. (4.2.17). The diagonal basis is known and the solutions in each of the u and d sectors are
M2 = 4(n+ 1)(n+ 2)mq. Here, with fixed σ(0) = 1, σ′(0) = 0, τ ′(0) = 0, we vary the mass squared
and the value of τ(0). We plot the quantity 1/(|σ(∞)|+ |τ(∞)|, which diverges when both the fields
vanish asymptotically. In this case, we have set one quark mass to unity and the other 0.5 — there
are clear peaks at τ(0) = −1 and M2 = 2, 6, which are the zeroth and first excited states of the d
quark state. The peak at τ(0) = 1 and M2 = 8 is the ground state of the u quark.

unique solution of the set of equations. An example of the solution is shown in fig. 4.1.

The solutions correspond to σ = τ = σu where M2 = M2
u and σ = −τ = σd where M2 = M2

d .

Plug these solutions back in the action eq. (4.2.15) will return back to the action in σu,d. The

above discussion is to show that when applying the correct boundary conditions, the solutions

from the different bases are equivalent.

Generally for coupled equations of n fields σi for i = 1, ..., n, one should use the same plane-wave

ansatz for all the fields eikx, k2 = −M2. Then set the IR boundary conditions as σ1(0) = 1,

and σ′i(0) = 0 for all i = 1, ..., n. The mass M and the n − 1 IR boundary values σi(0) = bi,

i = 2, ..., n, are the shooting parameters. Shooting from the IR using these parameters and seek

the solution where all n fields vanish simultaneously in the UV will give the unique solutions.

Off-Diagonal States

The off-diagonal states are dual to the bilinear state with different quark flavors — ūd and d̄u.

Since the u, d embedding are no more degenerate, the flavor symmetry is broken. This gives

rise to additional Higgs mechanism that happens between the off-diagonal vectors and scalars.

To illustrate this breaking, we consider for instance the real fluctuations in the following. The
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potential in eq. (4.2.6) vanishes. The commutator in the covariant derivative is non-vanishing

and mixes thus the scalar with the longitudinal component of the vector field. To illustrate this

in detail, we consider the scalar fluctuation along the T 1 direction and the vector field A2

X =

 mu δX1

δX1 md

 and A2 =

 0 −i

i 0

 , (4.2.19)

the covariant derivative is then

DaX = (∂aδX1 + (mu −md)A2a)

 0 1

1 0

 . (4.2.20)

As shown in [178], one can absorb the scalar fluctuation into the vector longitudinal component

by the transformation

A2a → Ã2a = A2a − ∂a
δX1

(mu −md)
. (4.2.21)

The vector Ã2 becomes massive with a mass proportional to the difference of the embeddings

(mu −md)
2. This Higgs mechanism also happens between the δX2 and A1. The equation of

motion of the vector field will now be

∂ρ[ρ
3∂ρVa] +

M2 − (mu −md)
2

2

(
1

(ρ2 +m2
u)2

+
1

(ρ2 +m2
d)

2

)
Va = 0, (4.2.22)

for Va = A1/2,a.

If the off-diagonal fluctuations are complex, the contribution from eq. (4.2.6) will set in. This will

contribute to the mass term of the (pseudo-)scalars which is again proportional to (mu−md)
2.

The corresponding dynamics is studied numerically in [178], we will not repeat it here.

4.3 Two-Flavor Non-Abelian AdS/QCD

In the last section we have collected all the essential ingredients, in this section we combine

these ingredients to construct a non-abelian bottom-up AdS/QCD model incorporating both

dynamical spontaneous symmetry breaking and the explicit symmetry breaking by the UV

quark masses. The symmetry breaking pattern is the global chiral symmetry U(Nf )L×U(Nf )R

broken down to the U(Nf )V which is then broken explicitly by separating the flavor branes.
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4.3.1 Kinetic Terms

The model lives in the AdS5 spacetime

ds2 = r2dx2(1,3) +
dρ2

r2
, (4.3.1)

where the radial direction is promoted to a Nf ×Nf matrix as in the last section

r2 = ρ21Nf
+X†X. (4.3.2)

X is the scalar matrix, that transforms under the chiral symmetry as X → U †
LXUR. This scalar

field is needed to construct a QCD-like theory where it describes the chiral condensate in the

dual theory. The X matrix is again a combination of the X8,9 matrices in the top-down model.

The metric becomes matrix too and transforms in the same way as the field X. The chiral

symmetric action that contains the kinetic terms is

S =

∫
d5x ρ3STr

(
1

r2
(DaX)†(DaX) +

1

g25

(
FL,abF

ab
L + (L↔ R)

))
. (4.3.3)

The covariant derivative in this case is defined as

DaX = ∂aX −AaLX + iXAaR, (4.3.4)

where AL,R are the gauge fields of the U(Nf )L,R respectively. The gauge fields are the bulk gauge

bosons that are dual to the left and right currents associated with the chiral symmetry. The

dilaton factor, that introduces the RG-flow that is essential for breaking the chiral symmetry

dynamically, is later introduced by ∆m2 term in the potential. The 5D coupling is obtained by

matching to the vector-vector correlator in the UV with the field theory one [39, 186], and is

determined by

g25 =
24π2

d(R) Nf (R)
, (4.3.5)

where d(R) is the dimension of the quark’s representation R, Nf (R) is the number of flavors in

that representation.
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4.3.2 Potential

To implement the dynamical chiral symmetry breaking in the model, one must include a scalar

potential that is invariant under the chrial symmetry. The simplest form is taken to be an

expansion in terms of X†X

V = STr
(
A+BX†X + C(X†X)2 + ...

)
, (4.3.6)

where the coefficients are ρ dependent and are needed to insure the correct mass dimensions. As

the first step, we take the coefficients to be just numbers instead of matrices. A only contributes

to the vacuum solutions and is not fixed.

The coefficient of the second term B, which is the ∆m2 in the following context, acts like a scalar

mass term in the potential. It represents the effects of the dilaton from the top-down model,

and originates from chiral symmetry breaking considerations in the top-down model. In the

top-down model, introducing an extra world-volume baryon number magnetic field B will break

the supersymmetry and conformality [27]. Such a construction is reviewed in section 3.4.2. To

the leading order in α, the Lagrangian gets effectively a dilaton factor

e−ϕ =

√
1 +

B2

r4
. (4.3.7)

The vacuum solution breaks the U(1)A symmetry. This is due to the fact that the dilaton is

divergent in the IR. One can see this if perform the expansion of dilaton around the IR

e−ϕ =

√
1 +

B2

ρ4
(1 − B2√

1 + B2

ρ4
ρ6
L2 + . . . ), (4.3.8)

where in the IR ρ→ 0 this expansion is divergent.

The second term in the above expansion is a scalar mass term. The L = 0 solution is no more

bounded if this term violates the BF-bound. In the duality, this mass is connected with the

anomalous dimension γ of the quark mass. In this model, one can show that the relation is

∆m2 = γ(γ − 2) [53]. The violation of BF-bound shows up at ∆m2 = 1 [164]. Through this

relation, the dilaton effect is translated into ∆m2 running in the bottom-up model. Following

the discussion in [53], taking the limit γ ≪ 1, the dilaton effect is implemented through

∆m2 = −2γ, γ =
3C2(R)

2π
α. (4.3.9)
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For the running coupling α, the two-loop result for multi-representational matter is used1

µ
dα

dµ
= −b0α2 − b1α

3 , (4.3.10)

where the beta functions are defined as

b0 =
1

6π

(
11C2(G) − 2

∑
R

T (R)Nf (R)

)
,

b1 =
1

24π2

(
34C2

2 (G) −
∑
R

(10C2(G) + 6C2(R))T (R)Nf (R)

)
.

(4.3.11)

In the above equations, R is the representation of the Weyl fermions, T (R) is the half of the

Dynkin index, C2 is the quadratic Casimir, G is the adjoint representation, Nf is the number

of flavors.

The full action is now

S =

∫
d5x ρ3STr

(
1

r2
(DaX)†(DaX) + ∆m2X†X +

1

g25

(
FL,abF

ab
L + (L↔ R)

))
. (4.3.12)

The vacuum eoms are now

∂ρ(ρ
3∂ρLi) − ρ ∆m2(ρ)Li = 0 (i = 1, . . . , Nf ) . (4.3.13)

If ∆m2 = 0, then the solution asymptotes to

Li(ρ) = mi + ciρ
−2. (4.3.14)

Including ∆m2 will alter this relation to the power law

Li(ρUV ) ∼ mρ−γ + cργ−2. (4.3.15)

The function ∆m2 should depend on
√
ρ2 + L2

i , such that the BF bound is not violated at large

ρ. This means the function ∆m2 is flavor dependent, and should be included in the STr. If

expand ∆m2 in terms of X , the potential eq. (4.3.6) is properly reproduced. This validates the

dependence of ∆m2 on
√
ρ2 + L2

i .

In the UV, we let Li(ρ → ∞) ∼ mi, where mi is the quark masses, which is taken as inputs.

1This running is exactly the one reviewed in section 3.6. We repeat it here for the convenience of the reader.
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From eq. (4.3.15), the condensate ci can also contribute, but it is suppressed by the large ρ.

One can approximate this quantity by taking the first derivative

L′
i(UV ) = −2c

ρ3

∣∣∣
UV
. (4.3.16)

After solving the vacuum eoms numerically with the boundary conditions in the IR and UV, one

can read out this quantity and see that it is really different from zero, thus the chiral symmetry

is broken. Another way to see the chiral symmetry breaking is the IR quark mass L(ρIR,i).

As shown in [25], due to the chiral symmetry breaking, the vacuum profile is lifted away from

the singularity in the L − ρ plane, as shown in fig. 3.2(b). Thus the presence of the IR mass

indicates the chiral symmetry is broken. This IR mass is flavor dependent. In the numerical

calculations, we set the UV quark masses to be mu ̸= md or mu = md ̸= ms for the split mass

case. Using the shooting method we get different IR masses associated with flavors. These are

later the lower bound when searching the solutions for the fluctuations. In the numerics, we set

the corresponding IR boundary conditions for the fluctuations at ρIR = max(ρIR,i).

As for the fluctuations, the scalar fluctuation matrix is parametrized as [187]

X = eiπa(x)Ta

(
L+

∑
k

ξk(x)Tk

)
eiπa(x)Ta . (4.3.17)

The gauge fields are

A =
1

2
(AL −AR) and V =

1

2
(AL +AR) , (4.3.18)

where V is the vector and A is the axial-vector field in the bulk.

Taking this paramtrization decouples all the fluctuations’ eoms. If use the parametrization

eq. (4.2.2) as in the abelian case, we will get for example the scalar eom

∂ρ(ρ
3∂ρξk(ρ)) − ρξjSTr∆m2(T k)(T j) − ρξjSTrX0

∂∆m2

∂L |X0(T k)(T j) +M2ξjSTrρ
3

r4
(T k)(T j)

+∂ρSTr
{
ρ32i

[
πj
(

(∂ρX
†
o)T kT j + (∂ρX

†
0T

j)(T k)
)

+ ∂ρπ
j(X0T

j)(T k)
]

+ h.c
}

+ρ3∂ρπ
bSTr(i(∂ρX0)T

kT j + h.c.) + ρ3M2πjSTr(i 1
r4

(X0T
j)(T k) + h.c.)

−ρ3M2ϕjV STr(i 1
r4

[T j , X0](T
k) + h.c.) −M2ρ3ϕjASTr(i 1

r4
{T j , X0}(T k) + h.c.) = 0.

(4.3.19)
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For a detailed derivation, see appendix C. This is numerically heavy to solve, and the physics

should not depend on the parametrization. Therefore we use eq. (4.3.17) in the following

computations. Also we note that our calculations don’t include the radial excitations, since to

reproduce the Regge M2 behavior, one needs to include string dynamics in the bulk for excited

states. For lowest excited states, the field approximation works well.

4.3.3 The Higgs Mechanism in the Vector Sector

In the usual QCD, the Higgs mechanism for the axial-vectors are known, where the massless

GBs can be absorbed into the longitudinal part of the axial-vectors. The reason for this Higgs

mechanism to happen is that the axial-vector symmetry, as a gauge symmetry, is spontaneously

broken. In our model, setting the quark masses to be different will break the flavor symmetry

explicitly on the boundary. This corresponds to breaking the vector gauge symmetry in the

bulk. In this case, one should observe a second Higgs mechanism between the vectors and the

scalars in addition to the axial-vector-pion one.

To demonstrate this extra Higgs mechanism, consider a Nf = 2 theory with a truncated scalar

potential

L = ρ3STr∂ρX
†∂ρX +A(ρ)STrX†X +B(ρ)STrX†XX†X. (4.3.20)

In our model, A(ρ) = ∆m2 and B(ρ) = ∂∆m2

∂ρ2
. The vacuums are the solutions of

∂ρ(ρ
3∂ρLu/d) −ALu/d − 2BL3

u/d = 0. (4.3.21)

Now consider an off-diagonal scalar fluctuation

δX =

 0 ξ2

ξ2 0

 , (4.3.22)

with an action to the quadratic order

L = ρ2(∂ρξ2)
2 +Aξ22 +B(2L2

uξ
2
2 + 2LuLdξ

2
2 + 2L2

dξ
2
2). (4.3.23)

Here we seek for the massless solutions, thus drop the space-time kinetic terms in the action

(which give rise to the M2 term) for simplicity. Then one can find that Lu − Ld is a solution

of the scalar eom. This is the GB mode in the bulk when Lu ̸= Ld. This is however not the
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physical states in the dual field theory since Lu − Ld doesn’t asymtote to 0 in the UV (the

normalizable part of the solution should vanish in the UV). To obtain the correct eoms for the

scalars, we include these expansions in the action.

Now we turn on the vectors in the action. Then the eoms of the off-diagonal scalar ξ2 is

∂ρ
(
ρ3∂ρξ2(ρ)

)
+
ρ

2

[
−2A−B(4L2

u + 4LuLd + 4L2
d)
]
ξ2

+
1

2
M2
ξ2ρ

3

(
1

r4d
+

1

r4u

)(
ξ2(ρ) ± (Lu − Ld)ϕV2/1(ρ)

)
= 0.

(4.3.24)

It mixes with the longitudinal part of the vector fields. We can see this if we decompose the

vector fields to V µ = V µ
⊥ + ∂µϕV , ∂µV

µ
⊥ = 0, Vρ = 0, where ϕV is the longitudinal part. From

the eom of the vector field, we find

∂ρ

(
ρ3∂ρϕV1/2(ρ)

)
± ρ3g25

8

(
1

r4u
+

1

r4d

)
(Lu − Ld)

(
ξ2(ρ) ∓ (Lu − Ld)ϕV1/2(ρ)

)
= 0

4M2∂ρϕV1/2(ρ) ∓ g25(Lu − Ld)∂ρξ2(ρ) ± g25ξ2(ρ)∂ρ(Lu − Ld) = 0.

(4.3.25)

But eq. (4.3.25) is actually a copy of eq. (4.3.24), in the sense that by substituting the second

equation into the first one in eq. (4.3.25) one gets eq. (4.3.24). This is stating nothing but the

scalar field is the GB of the vector field if the vector symmetry is broken in the bulk. One can

furthur show that this property extends to higher order corrections in the expansion. However,

in the numerics, the ∆m2 is a running parameter, therefore it will depend on the splitting of

the quark mass, thus ruin the consistency. In the following numerical calculations, we ignore

the vector field mixing and use the following eom as an approximation

∂ρ
(
ρ3∂ρξ2(ρ)

)
+
ρ

2

[
−∆m2

u − ∆m2
d − Lu(ρ)∆m2′

u − Ld(ρ)∆m2′
d

]
ξ1/2(ρ)

+
1

2
M2
ξ1/2

ρ3
(

1

r4d
+

1

r4u

)
ξ2 = 0.

(4.3.26)

This is the eom one gets if ∆m2 is inserted as flavor-dependent matrix at the level of Lagrangian.

So far we have established the basics for a non-abelian AdS/QCD model, in the following we

look further into the details of two scenarios — degenerate and split UV quark masses.

4.3.4 Equal Masses

First we discuss the scenario which corresponds to two coincident D7-branes that are separated

from the D3-stack by a distance L0 in the top-down model. We set therefore X = L0 and
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(a) Embedding vs. quark masses.
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(b) Embedding with κ.

Figure 4.2: Left plot: different embeddings for various quark masses. We input the boundary quark
mass values (2.3, 4.6, 95.5) MeV for Li, i = u, d, s, respectively, in units where mρ = 775 MeV.
The quark condensates can be calculated numerically using eq. (4.3.14) — we find ((65.7 MeV)3,
(67.3 MeV)3, (180.2 MeV)3) for the three flavors. Right plot: the dashed line shows the effect of a
double trace term with κ = −0.3 (dashed line) compared to κ = 0 (full line).

fluctuations to be zero in the action eq. (4.3.12). One obtains the vacuum eom

∂ρ
(
ρ3∂ρL0

)
− ρ∆m2L0 = 0. (4.3.27)

Here ∆m2 includes implicitly the running through ∆m2 = ∆m2(log(r)) = ∆m2(log(
√
ρ2 + L2

0)).

To solve the vacuum eoms, we shoot from the IR using the shooting method. At IR we impose

the boundary conditions that the solution should be regular, in the sense that the first derivative

should be finite

L0(ρIR) = ρIR, ∂ρL0(ρIR) = 0. (4.3.28)

The UV boundary condition is to let the UV vacuum solution extend to the quark mass m,

which is an input. After implementing these boundary conditions, the shooting parameter is

the ρ-position where the solution ends in the IR. The solutions are shown in fig. 4.2(a).

To get the dynamics of the fluctuations, set

X = (L0 + στ0 + ξaτa)e2iπ
iτ i (4.3.29)

in the action eq. (4.3.12) where a = 1, 2, 3 and i = 0, ..., 3. Since the flavor symmetry is kept in

this scenario, the factors like the metrics and ∆m2 are proportional to the identity matrix, can

be pulled out of the STr. Therefore the above definition of X is equivalent to the definition in

eq. (4.3.17).
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The singlet and triplet scalar eoms are degenerated, e.g.

∂ρ(ρ
3∂ρσ(ρ)) − ρ∆m2σ(ρ) − ρL0(ρ)σ(ρ)

∂∆m2

∂L
|L0 +M2 ρ

3

r4
σ(ρ) = 0. (4.3.30)

For the vector fields, we get N2
f generated vector fields which share the dynamics

∂ρ(ρ
3∂ρV (ρ)) +M2

V

ρ3

r4
V (ρ) = 0. (4.3.31)

Due to the spontaneous symmetry breaking of the axial symmetry, there is a Higgs mechanism

combines the axial vector and the GBs, as known in [39]. The action of the axial sector is

S =

∫
d4xdρ

[
− ρ3

4g25
F aAF

a
A + L2

0ρ
3(∂π −Aa)2

]
. (4.3.32)

Decomposing the axial-vectors into Aµ = Aµ⊥ +∂µϕA, and use the Lorentz gauge ∂µA
µ
⊥ = 0, the

axial-vector Aµ⊥ decouples from the rest. We get again N2
f copies of the eom

∂ρ(ρ
3∂ρA(ρ)) − g25

ρ3L2
0

r4
A(ρ) +

ρ3M2
A

r4
A(ρ) = 0 . (4.3.33)

The longitudinal parts of the axial-vectors ϕA mix with the GBs π which explains the Higgs

mechanism

∂ρ(ρ
3L2

0∂ρπ
a) − L0ρ

3q2

(ρ2 + L0)2
(πa − ϕaA) = 0 (4.3.34)

q2∂ρ(ρ
3∂ρϕ

a
A) − L0ρ

3q2

(ρ2 + L0)2
(πa − ϕaA) = 0. (4.3.35)

These eoms are nothing but N2
f copies of the abelian theory. The spectrum has been studied

in [53]. The Nf massless pions show a Gell-Mann-Oakes-Renner relation.

4.3.5 The 1/N Effect

Apparently, the discussion in the last section shows that, the current potential will not tell the

differences between, say, the singlets and triples, which we know from both Nf = 2 and Nf = 3

QCD their masses are not degenerated. To work around this point one must include extra terms

in the scalar potential that is also invariant under the symmetry. Such a term in the lowest

order is the double trace term κTr[X†X] that is controlled by the coupling constant κ. Double
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trace term in QCD should be suppressed by 1/N2, so the range of κ is chosen to be small.

(
TrX†X

)2
=

1

4

[
(L0 + σ)2 +

∑
k

ξ2k

]2
≃ 2L2

0ξ
2
k + 6L2

0σ
2 + . . . . (4.3.36)

Adding this contribution will change the scalar potential and therefore change the eoms of the

scalar fields to split the singlet from the triplet. And it will also change the vacuum eoms to

include the double trace contribution

∂ρ
(
ρ3∂ρL0(ρ)

)
− ρ∆m2(ρ)L0(ρ) − κL0(ρ)3ρ = 0 . (4.3.37)

Numerically, the extra contribution will lift the vacuum solution a bit above the original one. In

fig. 4.2(b) we plot the vacuum solution setting the UV quark mass to be 95.5 MeV (e.g. strange

quark mass). As can be seen from the plot, for such a mass, the effect of the double trace term

is very limited. One can easily imagine that including the double trace term will only introduce

minor effect into the vacuum solutions for the u and d quarks.

The diagonal scalar eoms are changed to

∂ρ(ρ
3∂ρσ(ρ)) − ρ(∆m2)σ(ρ) − ρL0(ρ)σ(ρ)

∂∆m2

∂L
|L0 +M2

σ

ρ3

r4
σ(ρ) − 3κL2

0σ(ρ)ρ = 0

∂ρ(ρ
3∂ρξ3(ρ)) − ρ(∆m2)ξ3(ρ) − ρL0(ρ)ξ3(ρ)

∂∆m2

∂L
|L0 +M2

ξ3

ρ3

r4
ξ3(ρ) − κL2

0ξ3(ρ)ρ = 0.

(4.3.38)

Solving them numerically using the shooting method for coupled equations developed in sec-

tion 4.2, the results are plotted in fig. 4.3. We find a dependence of the scalar masses on the

coupling κ. To have the masses in the observed range [7], the coupling κ can only be varied in

a narrow range.

The full spectrum when including the double trace term is listed in table 4.1. We fitted the

ρ meson mass to read out other masses as predictions. The double trace term should scale as

1/N2 ∼ 1/9, therefore we chose κ = −0.3 as an example to compute the spectrum. As shown in

the last column of table 4.1, most of the masses are at 3% level comparing to the data. The π

mass is very sensitive to the UV quark mass that we input in solving the vacuum. This explains

the larger deviation in the table. This value can decrease to a value very close to the real pion

mass if tune down the UV quark mass just a bit. What we find out in this table is the mass

splitting in the states f0(980) and a0(980), i.e. the scalar singlet and triplet respectively. One

sees that including such a term does produce the correct mass splitting in and only in the scalar

sector.
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Figure 4.3: Dependence of the scalar masses on κ when quark mass mq = 2 MeV. κ is the coupling
of the double trace term introduced in eq. (4.3.38), which gives a small splitting in the singlet and
triplet scalar masses mσ and mξ3 .

Observables QCD [MeV] U(Nf = 2) [MeV] Deviation

Mρ(770) 775.26 ± 0.23 775* fitted

Ma1(1260) 1230 ± 40 1194 3%

Mf0(980) 990 ± 20 994* < 1%

Ma0(980) 980 ± 20 997 2%

π0 134.9768 ± 0.0005 117 14%

Table 4.1: Meson masses of the lowest lying states in the U(Nf ) model with equal quark masses. The
ρ meson mass is fixed to 775 MeV and we have set mq = mu = 2.3 MeV and κ = −0.3 (therefore
the asterisk next to 994.). The QCD masses are taken from the PDG [7]. The mass difference in
f0(980) and a0(980) is introduced by the double trace term with the coupling κ. The π0 mass is very
sensitive to the quark mass, this explains the large deviation.

4.3.6 Split Masses

We consider in this section a more interesting case. We split the quark masses in UV by

separating the branes. This is dual to a 4D QFT with broken U(2) flavour symmetry. We

neglect the EM contributions in this discussion.

When separating the D7-branes, additionally, the global flavor symmetry U(2) is broken explic-

itly on the boundary. This is because we introduce the breaking through inputting different UV

quark masses. The vacuum eoms are changed to

∂ρ
(
ρ3∂ρLi

)
− ∆m2

i ρLi = 0, i = u, d. (4.3.39)

This refers to two U(1)s representing the u and d-branes respectively. The corresponding fluc-

tuation states are uū and dd̄, i.e. the eigenstates in the large N limit when no multi-trace terms
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present.

The off-diagonal fluctuations are now no more degenerated with the diagonal ones due to the

mass splitting. The eoms can thus be sorted into two groups, the diagonal (qq̄) and the off-

diagonal (ud̄ and dū). The off-diagonal ones correspond to two charged components in the

triplet. In the following we take the vector state as an example to demonstrate the numerical

computations. The other equations can be found in appendix D.

For the vector meson, the off-diagonal states are V1/2. Their eoms are

V1/2 : ∂ρ
(
ρ3∂ρV1/2(ρ)

)
+
ρ3

8

(
1

r4u
+

1

r4d

)[
4M2

V1/2
− g25 (Lu(ρ) − Ld(ρ))2

]
V1/2(ρ) = 0.

(4.3.40)

Where in the computations, we have defined V µ
i = V µ

⊥,i + ∂µϕV,i, ∂µV
µ
⊥ = 0 and taking the

Vρ = 0 gauge. The transverse part is the vector fluctuation. The longitudinal part mixes

with the scalars, see eq. (D.2). This is a bulk Higgs mechanism that is caused by the sponta-

neous symmetry breaking of the bulk gauge symmetry (explicit symmetry breaking of the flavor

symmetry on the boundary), where the scalars become the GBs of the vector bosons.

To solve these equations numerically, we set the IR boundary conditions to be

Vi(ρd) = 1, ∂ρVi(ρd) = 0, Vi(ρUV ) = 0, i = 1, 2, (4.3.41)

where ρd is the IR mass we get from solving the embedding Ld. In the UV we required that

the fluctuations should vanish. We use the shooting method to shoot from the IR, seek a mass

MV1/2 such that the field vanishes in the UV. In this way we obtain the physical mass of the

charged vector meson.

The scalar fields are mixed with the longitudinal parts of the dual vector fields ϕV due to the

bulk Higgs mechanism. One can set the IR boundary condition to

ϕv,i(ρd) = 1, ϕ′v,i(ρd) = 0, ξ2(ρd) = b. (4.3.42)

Here b is a shooting parameter. Now one seeks the parameter pair (b,Mξ) such that the scalar

and the ϕV both vanish in the UV. Same boundary conditions can also be used in the pion

sector, since they mix with the longitudinal part of the axial vector fields. However, we find

out that for ϕV/A, ∂ρϕV/A ≪ f where f a general meson field, ignoring the mixing is a good

approximation. This corresponding to the decoupling limit of the coupled equations. We take
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this limit in computing the spectrum. The results are listed in table 4.2. The values are very

close to the ones in table 4.1. But we see that there is a splitting in π0 and π± after introducing

the mass splitting. We illustrate this splitting in fig. 4.4(a).

Observables QCD [MeV] U(Nf = 2) [MeV] Deviation

Mρ(770) 775.26 ± 0.23 775* fitted

Ma1(1260) 1230 ± 40 1196 3%

Ma0(980) 980 ± 20 998 2%

π± 139.57039 ± 0.00017 146 2%

Table 4.2: Meson masses of the lowest lying states in the U(Nf ) model with unequal quark masses,
mu = 2.3 MeV and md = 4.6 MeV. The ρ meson mass is fixed to 775 MeV. The QCD masses are
taken from the PDG [7]. Notice the deviation of pion from the initial π0 state to the π± state.

On splitting the quark masses one ends up with the uū and dd̄ type of states in the dual field

theory. As is known from the QCD, the true physical states are actually admixtures of the

two states. For this purpose, we include the 1/N effect to find physical states for the scalar

fields. By adding the double trace term, the vacuum dynamics are described by a set of mixed

equations

∂ρ
(
ρ3∂ρLu(ρ)

)
− ∆mu(ρ)ρLu(ρ) − 2κLu(ρ)3ρ− 2κLu(ρ)Ld(ρ)2 = 0,

∂ρ
(
ρ3∂ρLd(ρ)

)
− ∆md(ρ)ρLd(ρ) − 2κLd(ρ)3ρ− 2κLd(ρ)Lu(ρ)2 = 0.

(4.3.43)

The diagonal scalar fields now have the dynamics

∂ρ(ρ
3∂ρσu) + ρ

(
−∆mu(ρ) − Lu(ρ)∆m′

u(ρ) − 2κ
(
3Lu(ρ)2 + Ld(ρ)2

)
+
ρ2M2

r4u

)
σu(ρ)

−4κρLu(ρ)Ld(ρ)σd(ρ) = 0,

(4.3.44)

∂ρ(ρ
3∂ρσd) + ρ

(
−∆md(ρ) − Ld(ρ)∆m′

d(ρ) − 2κ
(
+3Ld(ρ)2 + Lu(ρ)2

)
+
ρ2M2

r4d

)
σu(ρ)

−4κρLu(ρ)Ld(ρ)σu(ρ) = 0.

(4.3.45)

These are a set of coupled differential equations. To solve this, we again employ the method

developed in section 4.2

σu(ρ)|IR = 1, σd(ρ)|IR = b, σ′u,d(ρ)|IR = 0, (4.3.46)

where the IR boundary of σd is taken to be a free shooting parameter called b. The IR is taken
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Figure 4.4: Left plot: The π± mass increases with the growing quark mass splitting at fixed mu and
κ = 0. Right plot: The scalar masses in the presence of κρTr(X†X)2 in the split mass case. The
shaded blue area marks the valid data range of the f0(980), and the yellow area marks that of the
a0(980). This indicates a range κ ∈ [−0.4, 0].

to the be IR mass of Ld. This essentially means that the two fields should end at different

positions in the IR. Then one can use the NDSolve function in Mathematica to shoot from the

IR, seek for the combinations of the free parameters (b,M) such that both of the fields σu and

σd vanish in the UV.

Since the coupling κ is a free parameter, one can vary it to find the range that the scalar singlet

and the third triplet masses lie within the correct range. This is shown in fig. 4.4(b). We note

that the η′ mass is not discussed in this section, since the U(1)A is not anomalous in the large

N . To obtain a meaningful discussion on this mass, the Wess-Zumino-Witten term must be

added to the action to include the chiral anomaly. This term is currently missing in the theory.

4.4 Three-Flavor Non-Abelian AdS/QCD

Using the formalism discussed in the last section, one can compute the three-flavor QCD for

the case mu = md ≪ ms. The eoms are listed in appendix E. They have the same structure as

the two flavor QCD case if we define

fu+d :=

√
2

3
f0 +

1√
3
f8, fs :=

1√
3
f0 −

√
2

3
f8. (4.4.1)

f denotes a general meson field. Requiring mu = md ≪ ms is equivalent to separate the three

flavor-branes into two coincident branes (u- and d-branes) and a s-brane. This breaks the U(3)

gauge symmetry in the bulk to U(2) ×U(1). The corresponding singlets are (uū+ dd̄)/
√

2 and

ss̄ states. In this case, the ω and ρ mesons are degenerated (they contain only the u and d
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Observables QCD [MeV] Nf = 3 - split masses [MeV] Deviation

Mρ(770), ω(782) 775.26 ± 0.23 775* fitted

MK∗(892) 891.67 ± 0.26 1009 12%

Mϕ(1020) 1019.461 ± 0.016 1048 3%

Ma1(1260), Mf1(1285) 1230 ± 40 1104 11%

MK1(1400) 1403 ± 7 1377 2%

Mf1(1420) 1426.3 ± 0.9 1713 18%

Ma0(980), Mf0(980) 980 ± 20 929 5%

MK∗
0 (700)

845 ± 17 876 4%

Mf0(1370) 1370 970 34%

Mπ 139.57039 ± 0.00017 139 1%

MK 497.611 ± 0.013 584 16%

Mη′ 957.78 ± 0.06 791 19%

Mπ(1300) 1300 ± 100 1438 10%

MK(1460) 1460 1807 21%

Table 4.3: Meson masses in the three flavor case compared with the experimental data [7]. We have
fixed the masses for the vector mesons ρ and ω and calculated the masses for the axial vectors, the
scalars and the pNGBs. The quark masses used are mu = md = 3.1 MeV and ms = 95.7 MeV.

quarks).

In the qq̄ hadron model, the singlet and the eighth component of the octet vector mesons are

ideally mixed, with a mixing angle of 35.3◦ [188]. This means that the vector meson ϕ(1020)

is a ss̄ state. The axial vectors are supposed to follow the same structure. The scalar mesons

states are not uniquely defined. In the quark model, the lowest states are supposed to be the

f0(500), but it is also suspected to be a tetraquark state [7]. They don’t follow an ideal mixing

pattern. Therefore the heavy-light scalar state (u/d-s state) is not a ss̄ state and the model’s

prediction is expected to show large deviation.

The pseudo-scalars are the GBs in the massless limit. In the three-flavor QCD, the singlet and

octet are only slightly mixed, with a mixing angle of 18◦. Also, the singlet state η′ receives

large contribution from the chiral anomaly. This is implemented by adding a Wess-Zumino-

Witten term to the action. Such a term is expected to be nontrivial in the non-abelian DBI,

therefore the discussion is postponed for future work. Nevertheless, this state is still included

in the spectrum to complete the analysis. Higher radial excitations can also be computed. But

the spectrum doesn’t show a Regge trajectory. The reason for this is, the states are point
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like instead of stringy states. For a better prediction on the physical observables, one need to

include the stringy effects. Two radial excitation states π(1300) and K(1460) are included to

demonstrate this point.

The full spectrum is listed in table 4.3. As already mentioned, the heavy-light scalar state is not

well defined. The f0(1370) state is also modeled as glueball or meson molecule in other models,

see section 63 of [7] and references therein. Thus the large deviation of the f0(1370) mass from

the experimental data is understandable. Also the η′ state has a deviation of 19%, this is due

to the absence of the chiral anomaly. Aside from these two states, the rest part of the spectrum

shows a good agreement with the measured data.
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Chapter 5

Holographic Sp(2Nc) Gauge Dynamics:

from Composite Higgs to Technicolor

In this chapter we realize the final goal of our project. We construct a holographic model

showing both composite Higgs and technicolor phases and realizes a phase transition between

the two. Such a transition has been considered in the field theory in [62, 80, 97]. The model

describes generally a Sp(2Nc) gauge theory, with two Dirac fermion flavors in the fundamental

representation. The global symmetry to realize in the dual field theory is SU(4). Holograph-

ically, the U(1)A in the large N limit is not anomalous, thus in the holographic model we

construct, the global symmetry is U(4). We consider the global symmetry breaking pattern of

SU(4) → Sp(4) (holographically U(4) → Sp(4)). Such a breaking pattern in the field theory is

constructed in [80], and is reviewed in section 2.3. We construct a similar model in this chapter

holographically. However our focus is not on embedding the EW gauge group explicitly but

rather breaking the symmetry dynamically in the higher energy regime.

The embedding of the CH and TC phases in the holographic model is realized by constructing a

non-abelian AdS/YM theory with two different vacuums. This model contains a quadruplet that

transforms under a SU(2)×SU(2) invariant subgroup. If the EW gauge group is incorporated,

such this quadruplet will provide a candidate for composite Higgs.

In the following we will construct the model step by step, from a composite Higgs model to a

mixed model with the CH and TC phases in the end. In section 5.1 we discuss the gauge theory

of the model, where we show the Lagrangian, the generators and the vacuums all on the dual

field theory side. Then in section 5.2 we construct the corresponding holographic model. In
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section 5.3 we first construct a U(4) → Sp(4) case with the UV fermion mass all degenerate.

Then we separate the flavors in section 5.4 as an intermediate step. Finally in section 5.5 we

incorporate two U(4) → Sp(4) vacuums — one from adding a UV fermion mass and the other

from introducing the NJL four-fermion interaction — realizing a transition from the composite

Higgs to technicolor. This scenario is the case with split UV fermion masses in section 5.4

modulo a rotation. In each step we calculate the bosonic bound states’ spectrum and the decay

constants. The work in this chapter is published in [2].

5.1 The Gauge Theory

We will reformulate the construction in [80] which is reviewed in section 2.3 in this section, and

set our notations. The need for reformulating the theory is for the extension of this theory to

the holographic one in the next section.

The dynamics of an Sp(2Nc) gauge theory with 2 Dirac fermions in the fundamental represen-

tation is formulated by [62, 80, 97]

L = −1

4
GµνGµν + iψ̄iD/ψi − ψ̄iMijψj , (5.1.1)

and the Dirac spinor is defined in terms of four two-component right-handed Weyl spinors

ψi =


UCL

DC
L

DR

UR

 . (5.1.2)

By far this is similar to the conventions in section 2.3. Since we want to realized the SU(4) →

Sp(4) theory later holographically using the D-branes, the global symmetry group should be

U(4). This is because the global symmetry corresponds to the gauge symmetry realized by the

D7 flavor branes and this symmetry is U(Nf ). The U(1)A is not anomalous in the large N limit,

therefore the global symmetry is essentially U(Nf ). The generators of the U(4) symmetry group

is chosen to be

T 1−3 =
1

2
√

2

τi 0

0 τi

 , T 4−6 =
1

2
√

2

τi 0

0 −τi

 , (5.1.3)
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for i = 1, 2, 3, τi are the Pauli matrices and

T 7/8 =
1

2
√

2


0 0 0 −i

0 0 ±i 0

0 ∓i 0 0

i 0 0 0

 , T 9/10 =
1

2
√

2


0 0 −i 0

0 0 0 ∓i

i 0 0 0

0 ±i 0 0

 , (5.1.4)

T 11/12 =
1

2
√

2


0 0 1 0

0 0 0 ±1

1 0 0 0

0 ±1 0 0

 , T 13/14 =
1

2
√

2


0 0 0 1

0 0 ±1 0

0 ±1 0 0

1 0 0 0

 , (5.1.5)

T 15 =
1

2
√

2

12 0

0 −12

 , T 16 =
−1

2
√

2

12 0

0 12

 . (5.1.6)

If we want to incorporate the EW sector, the U and D doublet need to be promoted to be in

the fundamental representation of the gauge group SU(2)L. The corresponding generators are

then (T 1 +T 4)/
√

2, (T 2 +T 5)/
√

2 and (T 3 +T 6)/
√

2. This is considered as a neglectably weak

perturbation on the strong gauge dynamics.

Given that the representation of U(4) is pseudo-real, the bound states, i.e the fluctuations in

the later holographic model, are parametrized in the anti-symmetric matrix

Xf =


0 σ −Q5 + iS − iπ5 Q2 − π2 + iπ1 − iQ1 −Q4 + π4 + iQ3 − iπ3

−σ +Q5 + iπ5 − iS 0 Q4 + π4 + iQ3 + iπ3 Q2 + π2 + iQ1 + iπ1

π2 −Q2 + iQ1 − iπ1 −Q4 − π4 − iQ3 − iπ3 0 σ +Q5 + iS + iπ5

Q4 − π4 + iπ3 − iQ3 −Q2 − π2 − iQ1 − iπ1 −σ −Q5 − iS − iπ5 0

 .

(5.1.7)

Under U(4) flavor symmetry Ω, the matrix X transforms as

Xab → X ′
cd = ΩcaΩdbXab ⇔ X → X ′ = ΩXΩT . (5.1.8)

The gauge theory is expect to behave like a strong interacting theory in a similar way like

QCD, thus the fermions are expect to condense. The condensate is assumed to be colorless,

anti-symmetric in color indices. For conserved Lorentz invariance, the angular momentum wave

function must be antisymmetric. So the condensate must be anti-symmetric in flavor too. When
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σ acquires a vev, the vacuum matrix should be anti-symmetric and might be in the form

X =


0 L0 0 0

−L0 0 0 0

0 0 0 L0

0 0 −L0 0

 . (5.1.9)

This vev corresponds to an invariant Sp(4) subgroup of U(4), the broken generators are T i, for

i = 8, 10, 11, 14, 15, 16. Given that U(4) has 16 generators, breaking U(4) down to Sp(4) will

give rise to 6 GBs — πi for i = 1, ..., 5 and S, where the S is a singlet. One can also consider an

equivalent vacuum when Q4 acquires a vev, which also breaks the U(4) to Sp(4) with the form

XQ0 =


0 0 0 −Q0

0 0 Q0 0

0 −Q0 0 0

Q0 0 0 0

 . (5.1.10)

The two vevs are related by the transformation X = UXQ0U
T , where the transformation matrix

is

U =
1√
2


0 −1 0 1

1 0 −1 0

0 1 0 1

1 0 1 0

 . (5.1.11)

The GBs associated with the broken symmetry by this vev are Q1 −Q5 and S.

The mass terms for the bound states are introduced in the same way as the vevs, especially

they are aligned with the vevs taking the following forms respectively

ML =


0 m1 0 0

−m1 0 0 0

0 0 0 m2

0 0 −m2 0

 , MQ =


0 0 0 −m1

0 0 m2 0

0 −m2 0 0

m1 0 0 0

 . (5.1.12)

When m1 = m2 ̸= 0, both cases manifest an explicit flavor symmetry breaking of the form

U(4) → Sp(4), where the associate GBs become massive pNGBs. Splitting the masses m1 ̸= m2,

the global flavor symmetry is broken explicitly down to SU(2)L × SU(2)R.

If combine the two vevs, then the global symmetry is also broken explicitly to SU(2)L×SU(2)R,
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the corresponding matrix is

X =


0 L0 0 −Q0

−L0 0 Q0 0

0 −Q0 0 L0

Q0 0 −L0 0

 . (5.1.13)

Then this vev can be rotated to a similar form as the ML in eq. (5.1.12) by the transformation

X → UXUT to the following forms

X →


0 L0 +Q0 0 0

−L0 −Q0 0 0 0

0 0 0 L0 −Q0

0 0 −L0 +Q0 0

 , using U =
1√
2


0 −1 0 1

1 0 −1 0

0 1 0 1

−1 0 −1 0

 ,

(5.1.14)

X →


0 L0 +Q0 0 0

−L0 −Q0 0 0 0

0 0 0 −L0 +Q0

0 0 L0 −Q0 0

 , using U =
1√
2


0 −1 0 1

1 0 −1 0

0 1 0 1

1 0 1 0

 .

(5.1.15)

We write this out explicitly here. Their applications will become clear when we introduce the

NJL interaction in section 5.5.

The two vacuums are equivalent at the gauge theory level. However, when gauging the EW

SU(2)L, the vacuum in eq. (5.1.9) is invariant while the one in eq. (5.1.10) isn’t. Since the

vacuum corresponds to the effective potential tends to align the vacuum in the gauge symmetry

preserving direction [100], the vacuum preferred is eq. (5.1.9). This is the vacuum adopted in

some composite Higgs models. The associated pNGBs π1,...,4 forms a Higgs doublet.

The other vacuum in eq. (5.1.10) breaks the EW symmetry in the sense of the technicolor model.

Such a vacuum is favored if one introduces, for example, the four-fermion NJL interactions. The

Lagrangian for such an interaction is

L =
g2s

Λ2
UV

(Ψ̄LURŪRΨL + Ψ̄LDRD̄RΨL), (5.1.16)

where Λ is the UV cut-off, and gs is the dimensionless NJL coupling.
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5.2 Holographic Model

To describe the aforementioned gauge theory holographically, we employ the non-abelian AdS/YM

theory developed in chapter 4. The bilinear operators’ vev and fluctuations are introduced

through the scalar field X. In the bulk, they live in the AdS5 space

ds2 = (ρ2 +X†X)dx23+1 + (ρ2 +X†X)−1dρ2, (5.2.1)

where ρ is the holographic radial coordinate as before. The X, like in the non-Abelian AdS/QCD

case, is a matrix in flavor space. Generally the action for the X field is

L =
1

2
ρ3Tr

(
∂ρX

†∂ρX
)

+
1

2
ρ3Tr

(
ρ2 +X†X

)−2 (
∂xX

†∂xX
)

+
1

2
ρ A

[
Tr
(
ρ2 +X†X

)]
TrX†X +

B

ρ

(
4TrX†XX†X −

(
TrX†X

)2)
.

(5.2.2)

This action is quite similar as the one eq. (4.3.12) in non-Abelian AdS/QCD, but here we change

the introduction of running through the ∆m2-matrix with the function A. It works as follows.

A is a function of Tr(ρ2 +X†X), for all the fields f in X, their eoms will be

∂ρ(ρ
3∂ρf) − ρAf − 1

2

∂A

∂f
f2 = 0. (5.2.3)

To arrive at the same eom for the embedding as seen in eq. (4.3.27), we impose the following

relation between A and ∆m2

A+
1

2

∂A

∂f
f ≡ ∆m2

[
ρ2 + f2

]
. (5.2.4)

Here we let ∆m2 be a function of r2 = ρ2 + f2, the explicit dependence will be ∆m2[log r],

where r is dual to the running energy scale µ. The function ∆m2 should depend on r instead

of ρ is to insure the stability of the potential against the BF-bound in large embedding L [177].

The gauge theory dynamics is then introduced to the model using the AdS/CFT dictionary

M2 = ∆(∆ − 4) by relating the gauge theory running with ∆m2

∆m2 = −2γ. (5.2.5)

The running is introduced in the same way as before. We repeat it here for the convenience of
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Gauge Group C2(G) C2(F ) d(F ) T (F ) Nf = Nf̄

SU(Nc) Nc
N2

c−1
2Nc

Nc
1
2 2

Sp(2N) N+1 2N+1
4 2N 1

2 4

Table 5.1: Factors in eq. (5.2.6) for various gauge groups. The matter fields are in the fundamental
representations, which is marked as F .

the reader

µ
dα

dµ
= −b0α2 − b1α

3,

b0 =
1

6π

(
11C2(G) − 2

∑
R

T (R)Nf (R)

)
,

b1 =
1

24π2

(
34C2

2 (G) −
∑
R

[10C2(G) + 6C2(R)]T (R)Nf (R)

)
,

(5.2.6)

where R is the representation of the matter field. The expression is again rewritten in terms of

the number of Weyl fermions. The one-loop result for anomalous dimension is

γ =
3C2(R)

2π
α. (5.2.7)

C2 is the quadratic Casimir, G is the adjoint representation, Nf is the number of flavors, d(R) is

the dimension of fermion’s representation. We list the relevant definitions for this part in Table

5.1. We have also set α(1) = 0.65 in our computations, but the physical scales are normalized

in terms of the physical ρ mass. This choice is arbitrary and will not affect the results. Note

also that using the perturbative result in the non-perturbative regime is an assumption, the

features of IR pole are not expect to affect much of the spectrum.

If only including the contributions from A, then only (TrX†X)n terms are included. This will

lead to an accidental symmetry where the 12 elements of X becomes a 12-plet of SO(12).

Therefore we include the B term in eq. (5.2.2), which is the simplest term that breaks the

accidental SO(12) symmetry. As can be seen later in the eoms, for a degenerate model, i.e.

all fermions have the same mass, only the Q1,..,5 fields feel the effect of B. But including B

introduces a new free parameter. The mass splitting of the two sets of GBs, the (πi,S) and

(Qi, σ) are thus introduced by hand rather than predicted by the model via the gauge dynamics.

The mass terms for the operators in X are included in the usual AdS/CFT way. The UV

asymptotics of the matrix X is

Xij ∼ J +
O
ρ2

= mij + ψ̄iψj/ρ
2. (5.2.8)
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Where the mass terms are introduced from the UV source terms mij . In the following, we split

the scalar matrix X into

X = X0 +Xf , (5.2.9)

where X0 is the vev. It will be later substituted with the ones in eq. (5.1.9), eq. (5.1.10) and

eq. (5.1.13). Xf is the scalar fluctuation matrix, as in eq. (5.1.7).

One could include an NJL interaction in the UV

L =
g2

Λ2
ψ̄iψjψ̄jψi, (5.2.10)

where Λ is the UV cut-off. Such a term is introduced using Witten’s double trace prescription

reviewed in section 3.7. In this case, we reinterpret the mass term as the source term due to

the NJL interaction
g2

Λ2
=

J
O
, (5.2.11)

where O the operator vev in eq. (5.2.8).

5.2.1 The U(4) Gauge Theory

The bulk gauge field from the U(4) flavor symmetry that is dual to ψ̄γµψ are Ab, with b =

1, ..., 16, each associated with the generators in eq. (5.1.3). They are dual to the vector bound

states. The final action in the bulk describing a holographic U(4) → Sp(4) model is

S =

∫
d4xdρρ3STr

{
1

r2
(DMX)†DMX +

1

ρ2
A
[
Tr(ρ2 +X†X)

]
TrX†X

+
B

ρ4
(4TrX†XX†X − (TrX†X)2) +

2

g25

(
FA,abF

ab
A

)}
,

(5.2.12)

where M = 1, ..., 5 is the spacetime index. STr is the symmetrised trace, as defined in [182].

The covariant derivative is defined as

DMX = ∂M + iAbM (T bX +XT bT ), (5.2.13)

which introduces the interaction between the gauge fields and the scalar fields. The 5-dimensional

coupling g25 is

g25 =
24π2

d(R)Nf (R)
. (5.2.14)

This coupling is identified as reviewed in section 3.6.
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We then expand the action in terms of fluctuations fi to the quadratic order around the vacuum

and get the equations of motion, where fi represents a general fluctuation (field). To solve the

equations of motion numerically, we again employ the shooting technique. We look for solution

with the space-time dependence fi(ρ)eik.x, k2 = −M2
f that asymptotes to 0 in the UV. We

shoot from the IR and impose the following boundary conditions for a generic field f

f(ρIR) = 1, ∂ρf(ρIR) = 0, f(ρUV ) = 0, (5.2.15)

where the shooting parameter will be the field’s mass Mf . For coupled equations, we use the

boundary conditions developed in chapter 4

f1(ρIR) = 1, ∂ρf1(ρIR) = 0, f1(ρUV ) = 0,

f2(ρIR) = b, ∂ρf2(ρIR) = 0, f2(ρUV ) = 0,
(5.2.16)

where the shooting parameters in this case are the mass Mf and an IR boundary value b.

The boundary conditions when including the NJL interactions need a further discussion. Since

the fluctuations should feel the same NJL contribution in the UV as the embedding, then their

UV boundary conditions should have the same NJL effect between the source and the vev as

the embedding in eq. (5.2.11). We will clarity the details later in the corresponding section.

Aside from the bound states’ masses, another physical quantity we can calculate is the decay

constant. They are computed exactly as reviewed in section 3.6, we will not repeat it here.

5.3 The Mass Degenerate Case

We start first with the simplest construction, i.e. the flavor symmetry breaking of U(4) → Sp(4).

This is realized when all the fermions have the same mass m in the UV. The corresponding

vacuum in the holographic model is

L =


0 L0(ρ) 0 0

−L0(ρ) 0 0 0

0 0 0 L0(ρ)

0 0 −L0(ρ) 0

 . (5.3.1)

I.e. we have taken eq. (5.1.9) setting σ = L0 and the corresponding mass matrix in the UV

is the ML in eq. (5.1.12). The scalar fluctuations in eq. (5.1.7) split to: the Higgs-like mode
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0.4
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m=0.

m=0.012

m=0.12

Figure 5.1: Vacuum solutions for L0 against RG scale ρ for different UV fermion masses in the SU(2)
theory. The plot is in units where MV = 1 when m = 0. The embeddings corresponds to m=0, 0.012
and 0.12 MV respectively.

σ which is a singlet under Sp(4), the GBs π1, ..., 5 and S which form a 5-plet and a singlet of

Sp(4) respectively, and the massive modes Q1,...,5 affected by the B-term in eq. (5.2.12), which

forms another 5-plet under Sp(4). The broken generators are T i for i = 8, 10, 11, 14, 15, 16 in

eq. (5.1.3) – eq. (5.1.6). The vector fields split into a 10-plet of Sp(4) which are dual to the

vector bound states, a 5-plet that are dual to axial-vector bound states and a singlet.

5.3.1 The Vacuum

The embedding L0(ρ) is solved from the equation of motion

∂ρ(ρ
3∂ρL0) − ρ∆m2L0 = 0, (5.3.2)

shooting from the IR using the boundary condition

L0(ρIR) = ρ, ∂ρL0(ρIR) = 0. (5.3.3)

Vary the IR value ρIR and find the solution that asymptotes to different fermion masses m in

the UV. Here ∆m2 ≡ ∆m2[log(ρ2 +L2
0)]. We illustrate the profiles associated to three different

UV fermion masses in fig. 5.1.
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5.3.2 Fluctuations

The scalars contain the σ, the Qi, πi and the S, for i = 1, ..., 5. The σ is a fluctuation around

the vacuum L0(ρ), it’s dynamics is describe by the solution of

∂ρ
(
ρ3∂ρσ(ρ)

)
− ρ∆m2σ(ρ) − ρL0(ρ)σ(ρ)

∂∆m2

∂L

∣∣∣∣
L0

+M2 ρ
3

r4
σ(ρ) = 0, (5.3.4)

where r2 = (ρ2 + L2
0). In deriving this equation, certain relation between the function A and

∆m2 are needed. This is derived in detail in appendix F.1.

The Qi fields satisfy

∂ρ(ρ
3∂ρQi) − ρ∆m2Qi −

16B

ρ
L2
0Qi +M2 ρ

3

r4
Qi = 0. (5.3.5)

The vectors that are not higgsed have the equations of motion

∂ρ(ρ
3∂ρVi(ρ)) +M2

Vi

ρ3

r4
Vi(ρ) = 0, i = 1 − 7, 9, 12, 13. (5.3.6)

Where the rest 6 higgsed axial vectors have the equations of motion

∂ρ
(
ρ3∂ρAi(ρ)

)
− g25

ρ3L2
0

r4
Ai(ρ) +

ρ3M2
Ai

r4
Ai(ρ) = 0, i = 8, 10, 11, 14 − 16. (5.3.7)

In arriving at these equations, we have separate the axial-vectors in transverse and longitudinal

parts Aµ = Ai,µ⊥ + ∂µϕi, for i = 8, 10, 11, 14 − 16 and adopted the gauge Aρ = 0. The above

equations are for the transverse part of the axial-vector states.

The πs and S mix with the longitudinal components of the axial-vectors sharing mixed equations

of motion

∂ρ
(
ρ3∂ρϕj

)
+ g25

L0ρ
3

r4

(√
2πi − L0ϕj

)
= 0,

∂ρ
(
ρ3∂ρπi

)
− ρ∆m2πi +M2 ρ

3

r4

(
πi −

L0√
2
ϕj

)
= 0,

i = 1 − 5, j = 14, 8, 11, 10, 15.

(5.3.8)

The ordering of the indices is π1 mixes with ϕ14 etc. The S mixes with the ϕ16 and their

equations of motion are the same as in eq. (5.3.8).

The masses of the πi and S need a further discussion. If in the UV the embedding asymptotes
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Observables SU(2) Lattice SU(2) Sp(4) Lattice Sp(4) Sp(6) Sp(8) Sp(10)

mV (10) 1∗ 1.00(3) 1∗ 1.00(33) 1∗ 1∗ 1∗

mA (6) 1.66 1.11(46) 1.26 1.61(17) 1.18 1.14 1.12
mσ (1) 1.26 1.5(1.1) 1.20 1.22 1.23 1.23
mQ (5) 1.13 1.13 1.13 1.13 1.13
mπ,S (6) 0.02 0.01 0.01 0.01 0.01
FV 0.38 0.53 0.52(10) 0.59 0.64 0.67
FA 0.48 0.54 0.673(92) 0.59 0.63 0.66
fπ 0.06 0.10 0.122 (99) 0.12 0.12 0.13

Table 5.2: Bound states’ masses and decay constants at m ∼ 0 for gauge groups SU(2) to Sp(10)
respectively. The 4 Weyl fermions are in the fundamental representations of each gauge group. We
normalized the vector mass to 1 (this is noted by the asterisk). In computing we set B = 1 as an
example. The lattice result for the SU(2) gauge theory are taken from [189, 190]. The lattice results
for the Sp(4) theory are from [191] — the scalar sector has not yet been studied at low mass [192].
A further lattice study at large quark mass is in [193].

to 0, then there exists a solution where πi, S = L0 and ϕj =
√

2. This corresponds to a massless

solution M2
πi,S

= 0 which reflects that they are the Goldstones of the broken symmetry. Once

the embedding asymptotes to a non-zero fermion mass m ̸= 0, then this solution is no more

physical in the dual gauge theory, since it’s no more a fluctuation of the operator, but of the

mass. In this case in the bulk, these states still sever as the Goldstones that higgses the bulk

gauge fields. The GBs becomes pNGBs in that we get massive solutions.

The above equations of motion are solved by imposing the boundary conditions in eq. (5.2.15)

and eq. (5.2.16). We list the spectrum for the fields when m ∼ 0 and B = 1 for different gauge

groups in table 5.2. The Goldstones π1,...,5, S are not exactly massless since m is not exactly

0. We have rescaled the physical quantities in the units of the vector bound states’ mass MV0

when m ∼ 0. This is seen as in table 5.2 the vector bound states’ masses are marked with an

asterisk. The vector and axial-vector masses are compatible with the lattice QCD results. The

hadron masses are stable with respect to different gauge groups, except the axial-vectors are

decreasing with growing Nc.

The Qs are also solved in the similar manner, where as mentioned before, their masses depend

on the free parameter B. Were this term not present, the model will return back to a theory

with 12 degenerated scalars, where such an accidental symmetry is not present in the gauge

theory model we are studying. In fig. 5.2(a) we plot the Q mass against the parameter B in the

SU(2) gauge theory. As can be seen from the plot, the mass start to stabilze around B = 1 and

reach the same scale as the other hadrons. Since it’s mass is controlled by this free parameter,

a precise mass for Qs cannot be predicted from this model.

We have also plotted the masses and decay constants as functions of the UV fermion mass
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(a) The Q mass increases with B.
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(b) The degenerate π states.

Figure 5.2: Results for the SU(2) gauge theory. On the left: the Q state mass varies with the
parameter B, m = 0.006MV0

. Below B ∼ −0.03 the mass becomes tachyonic, which is not favored by
the current discussion. On the right: The π mass as a function of the UV fermion mass. As m → 0
the π mass vanishes, which shows the behavior of a Goldstone boson.

0.2 0.4 0.6 0.8
m(MV0

)

2
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8

Mf (MV0
)

V

A

π

σ

Q

Figure 5.3: The masses of the bound state f against the UV fermion mass in the unit of MV0
. The

gauge group is Sp(4) and B = 1.

when B = 1. As is shown in fig. 5.2(b), the Goldstones’ masses show a behavior Mπ ∼
√
m

as expected from the QCD for small fermion mass. We show the mass behavior against m for

Sp(4) gauge group explicitly in fig. 5.3. The masses of other fields increase with m, except the

scalar σ shows a slight drop before rise up again with m. The reason for that is the scalar mass

Mσ is very sensitive to the running of γ. When m is small, the conformal symmetry breaking

is large, resulting in a dominant contribution from the running that causes the mass to drop.

We also show the mass dependence of the spectrum and decay constants with different gauge

groups in fig. 5.4
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Figure 5.4: Bound states’ masses and decay constants vary with increasing UV fermion mass, with
different gauge groups in the degenerate case when B = 1. The plots are shown in units of MV0 at
zero fermion mass.
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5.4 Split The Mass

In this section we consider the scenario where the fermion UV masses are made different m1 ̸=

m2 ̸= 0. Making this difference brings the model essentially to the non-Abelian holographic

model we developed in the last chapter. This scenario is also a prototype for the model where

the NJL interactions are included.

5.4.1 The Vacuum

Making the mass different corresponding to the vacuum configuration

L =


0 L1(ρ) 0 0

−L1(ρ) 0 0 0

0 0 0 L6(ρ)

0 0 −L6(ρ) 0

 . (5.4.1)

Here we use L1(ρ) and L6(ρ) to represent different embeddings that asymptote to m1,2 in the

UV respectively. Choosing this embedding will break the Sp(4) to SU(2)L × SU(2)R, where

the invariant generators are T 1,...,6. This contains an invariant SU(2)L thus still describes a

composite Higgs model.

The equations of motion for the embeddings are coupled

∂ρ
(
ρ3∂ρLu

)
− ρLu∆m2 − 4B

ρ
Lu
(
L2
u − L2

d

)
= 0,

∂ρ
(
ρ3∂ρLd

)
− ρLd∆m

2 − 4B

ρ
Ld
(
L2
d − L2

u

)
= 0,

(5.4.2)

where ∆m2 ≡ ∆m2
[
log
√
ρ2 + 1

2

(
L2
u + L2

d

)]
. The radial coordinate is r2 = ρ214 + L†L =

diag(r21, r
2
1, r

2
6, r

2
6), where r21 = ρ2 + L2

1, r
2
6 = ρ2 + L2

6. They are solved using the boundary

conditions

∂ρL1(ρIR,1) = 0, L1(ρIR,1) = ρIR,1, L1(ρUV ) = m1

∂ρL6(ρIR,6) = 0, L6(ρIR,6) = ρIR,6, L6(ρUV ) = m2,
(5.4.3)

where the shooting parameters are the IR masses ρIR,1,6. The profiles will look like two curves

asymptote to different UV values in fig. 5.1.
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5.4.2 Fluctuations

In this case, the fluctuations are parametrized as

Xf =


0 σ1 + iS1 Q2 − π2 + iπ1 − iQ1 −Q4 + π4 + iQ3 − iπ3

−σ1 − iS1 0 Q4 + π4 + iQ3 + iπ3 Q2 + π2 + iQ1 + iπ1

π2 −Q2 + iQ1 − iπ1 −Q4 − π4 − iQ3 − iπ3 0 σ2 + iS2

Q4 − π4 + iπ3 − iQ3 −Q2 − π2 − iQ1 − iπ1 −σ2 − iS2 0

 .

(5.4.4)

The scalars π1,2,3,4 and Q1,2,3,4 each belong to a (2, 2) multiplet of SU(2)×SU(2), and the rest

scalars σ1,2 and S1,2 are singlets. The πs are still the Goldstones, they have the equations of

motion

∂ρ
(
ρ3∂ρϕj

)
− ρ3g25

8
(Lu + Ld)

(
1

r4u
+

1

r4d

)(
(Lu + Ld)ϕj − 2

√
2πi

)
= 0

∂ρ
(
ρ3∂ρπi

)
− ρ∆m2πi

+
ρM2

2

(
1

r4u
+

1

r4d

)(
πi −

1

2
√

2
(Lu + Ld)ϕj

)
− 4B

ρ
(Lu − Ld)

2πi = 0

i = 1, 2, 3, 4, j = 14, 8, 11, 10.

(5.4.5)

Since the UV masses of the embeddings L1,6 are non-vanishing, these states don’t have massless

solutions. They are massive pNGBs. The Qs also become the Goldstones of the additional

broken symmetry of Sp(4) → SU(2)×SU(2) in this case. Their dynamics are described by the

equations

∂ρ
(
ρ3∂ρϕj

)
+
ρ3g25

4
(Lu − Ld)

(
1

r4u
+

1

r4d

)(√
2Qi −

Lu − Ld
2

ϕj

)
= 0,

∂ρ
(
ρ3∂ρQi

)
+
ρ3M2

2

(
1

r4u
+

1

r4d

)
Qi − ρ∆m2Qi −

4B

ρ
(Lu + Ld)

2Qi

− ρ3

4
√

2
(Lu − Ld)M

2

(
1

r4u
+

1

r4d

)
ϕj = 0,

i = 1, 2, 3, 4 for j = 13, 7, 12, 9.

(5.4.6)

They are the Goldstone states when Qi = L1 − L6 and ϕj =
√

2.

The singlets S1,2 are formed by the S and π5 in the degenerate case as S1,2 = S ± π5. They

are the GBs associated with the axial-vectors 1
2(A15±A16) which corresponds to the generators

1
2
√
2
diag(1, 1, 0, 0) and 1

2
√
2
diag(0, 0, 1, 1) respectively. Their equations of motion take a similar
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form as the others

∂ρ
(
ρ3∂ρS1

)
− ρ∆m2S1 +

ρ3M2

r41

(
S1 −

Lu√
2
ϕ16−15

)
− 4B

ρ

(
L2
u − L2

d

)
S1 = 0,

∂ρ
(
ρ3∂ρϕ16−15

)
+
ρ3L1g

2
5

r41

(√
2S1 − L1ϕ16−15

)
= 0,

(5.4.7)

∂ρ
(
ρ3∂ρS2

)
− ρ∆m2S2 +

ρ3M2

r46

(
S2 −

Ld√
2
ϕ15+16

)
− 4B

ρ

(
L2
d − L2

u

)
S2 = 0,

∂ρ
(
ρ3∂ρϕ15+16

)
+
ρ3L6g

2
5

r46

(√
2S2 − L6ϕ15+16

)
= 0.

(5.4.8)

They become the massless GBs when ϕi =
√

2 with S1 = L1 and S2 = L6.

The other two singlets σ1,2 correspond to the fluctuations around the embeddings L1,6 respec-

tively. Their equations of motion are

∂ρ
(
ρ3∂ρσ1

)
+

(
ρ3M2

r41
− 4B

ρ

(
3L2

u − L2
d

)
− ρ∆m2 − ρL2

u

2r2arg,16
∆m2′

)
σ1

+LuLd

(
8B

ρ
− ρ

2r2arg,16
∆m2′

)
σ2 = 0,

∂ρ
(
ρ3∂ρσ2

)
+

(
ρ3M2

r46
− 4B

ρ

(
3L2

d − L2
u

)
− ρ∆m2 −

ρL2
d

2r2arg,16
∆m2′

)
σ2

+LuLd

(
8B

ρ
− ρ

2r2arg,16
∆m2′

)
σ1 = 0,

(5.4.9)

where ∆m2 ≡ ∆m2 (log rarg,16), ∆m2′ = d∆m2

d log(rarg,16)
, r2arg,16 = ρ2 + 1

2

(
L2
u + L2

d

)
. As can be seen

from the equations, they are not mixed with any longitudinal components of the vectors — they

are not eaten by any vectors. In deriving the equations above, we have used the relation

A+ 2
(
L2
u + L2

d

) dA

dTr(ρ24 + L†L)
= ∆m2 (log rarg,16)

dA

dTr(ρ24 + L†L)
+
(
L2
u + L2

d

) d2A

dTr(ρ24 + L†L)2
=

1

16r2arg
∆m2′.

(5.4.10)

The derivation of this relation is shown explicitly in appendix F.2.
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Figure 5.5: Dependence of meson masses on the difference ∆m = m2 − m1 of the UV fermion
masses for Sp(4) gauge groups in units of MV0

. We have set B = 1 and m1 = 0.014MV0
. The

(1 ± 4, 2 ± 5, 3 ± 6) vector states are members of the (3,1) and (1,3); (7, 9, 12, 13) and (8, 10, 11, 14)
are members of the two (2,2); 16 ± 15 are singlets.

Finally there are 6 unbroken vectors and 10 axial-vectors, their equations of motion are

∂ρ
(
ρ3∂ρAi

)
+
ρ3M2

Ai

r4j
Ai = 0,

i = (1 ± 4, 2 ± 5, 3 ± 6), j = 6, 1,

∂ρ
(
ρ3∂ρAi

)
+
ρ3

8

(
1

r4u
+

1

r4d

)[
4M2

Ai
− (Lu − Ld)

2g25
]
Ai = 0, i = 7, 9, 12, 13,

∂ρ
(
ρ3∂ρAi

)
+
ρ3

8

(
1

r4u
+

1

r4d

)[
4M2

Ai
− (Lu + Ld)

2g25
]
Ai = 0, i = 8, 10, 11, 14,

∂ρ
(
ρ3∂ρAi

)
+
ρ3

r4j

[
M2
Ai

− L2
jg

2
5

]
Ai = 0, i = 16 ± 15, j = 6, 1.

(5.4.11)

We solve the equations using the boundary conditions for the corresponding scenarios as men-

tioned in eq. (5.2.15) and eq. (5.2.16). The results for the Sp(4) gauge group are shown in

fig. 5.5, where we set B = 1 and m1 = 0.014MV0 and vary m2. The bound states’ masses

increase with the growing fermion UV mass as expected. One can also see that, due to the

mass splitting, the vectors A7,9,12,13 are no more degenerate with the A1±4,.... Also the A1±4,...

split into two groups — (3,1) and (1,3) under SU(2) × SU(2). The pNGBs show a Gell-Mann-

Oakes-Renner behavior with the heavier UV fermion mass given that the lowest fermion mass

is small. The Nc dependence for the masses and the decay constants are shown in fig. 5.6 and

fig. 5.7 respectively.

5.4.3 Phenomenological Considerations

Our results could be compared with two kinds of phenomenological models. The pNGBs could

either be considered as providing composite Higgs candidate as suggested in [80, 86, 194–196].
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Figure 5.6: Dependence of meson masses on the difference of the UV fermion masses ∆m = m2−m1

for different gauge groups in unit MV0 . We have set B = 1 and m1 = 0.014MV0 .
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Figure 5.7: Meson decay constants vary with increasing UV fermion mass difference, with different
gauge groups in the non-degenerate case. We have set B = 1 and m1 = 0.014.

Alternatively, they could be the dark sector considered in [193, 197, 198], become dark matter

candidates.

For the scenario that the pNGBs provide composite Higgs candidate, since we didn’t include the

interaction of the EW gauge gauge couplings and the top Yukawa coupling, we cannot set the

Higgs mass to 125 GeV. But we expect our pNGB could be about 100 GeV so as to construct an

EW model. The phenomenological aspect of an SU(4) → Sp(4) model is discussed in [196]. The

EW gauge sector and the flavor gauge bosons — which are the later vector bound states — are

embedded in two SU(4) groups realized using the hidden local symmetry technique [40]. The

spin-1 resonance is bound to be up to 2 TeV. Combining with our results require MV0/Mπ ≳ 10.

From fig. 5.6 this indicates that the UV fermion mass is ≲ 10−3MV0 . We list the dictionary

between our model and [196] in table 5.3. Note that this model predicts two more gauge singlets

with masses around mH which is still compatible with the present data. The lowest lying bound
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A1+4,2+5,3+6 A1−4,2−5,3−6 A7,9,12,13 A8,10,11,14

v0,± s0,± s̃0,± + ṽ0 a0,± + x0

Table 5.3: Dictionary between our notation, upper row, and the one of [196] for the spin-1 states.
Our states A15 and A16 correspond to an admixture of x̃0 of [196] and the additional U(1) axial
vector boson.

states have the mass ratios roughly around

MA1+4,A1−4,A7 : MQ,S1 : MS2 : MA8,A16+15,A16−15 ≃ 1 : 1.1 : 1.2 : 1.26 . (5.4.12)

Given the mass bound on vector bound states, this indicates that it is challenging to observe

the scalars Q and S1,2 at the high luminosity LHC given that for masses above 2 TeV, their

production cross section is low.

The second possibility is to consider the pNGBs as dark matter candidates in strongly interacting

dart sectors [197]. If the pNGB is the only dark matter candidate in such theories, it’s mass is

strictly bound to be mπ ≲ 100 MeV, which in turn is in tension with the observations from the

Bullet Cluster [199]. In [199] it was suggested that this tension is relaxed if other dark matter

candidates are present, such as a dark ρ-meson. They consider a strong-interacting dark sector,

similar to QCD, with an SU(NCD
) gauge group. For the dark ρ-meson’s mass mρD in the range

1.45 ≤ mρD/mπD ≤ 2, they found a dark-pion mass around 100 MeV where the relic density is

roughly reproduced. This could be realized in our model when the UV fermion mass is within

the range 0.02MV0 ≲ m ≲ 0.1MV0 for the degenerate case. In our model, the σ state is also

a candidate for dark matter, which will contribute to the relic density too. We postpone the

discussion on this to the future work. The same feature is expected in the mass-splitting case.

The lowest lying pNGB S1 is a singlet while the vector bound state is a triplet under SU(2)D,

the vector will not decay into 2S1, thus the πs are still the dark matter candidates.

5.5 From Composite Higgs to Technicolor: Including the NJL Interac-

tion

In this section we construct the model which incorporates both the UV mass term and the

NJL interactions. Such a construction is meant to contain the composite Higgs and technicolor

and their transitions in a similar way suggested in [80] which is reviewed in section 2.3. In

the following, we constraint our discussion in the model with an SU(2) gauge group. For Nc

dependence we expect a similar behavior as observed in the former two scenarios.
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The starting point is the degenerate case in section 5.3 where all fermions have a common UV

mass. In this case the pNGBs are the π1,...,5 and S. They contain a four-plet that transforms

as (2,2) under SU(2) × SU(2) that is identified as the Higgs doublet in the composite Higgs

models. On top of this construction, we add the NJL interaction eq. (5.1.16), which favors the

embedding Q4.

5.5.1 The Vacuum

Combing the mass term and the NJL term, one essentially changed the vacuum configuration

to

X =


0 L0(ρ) 0 −Q(ρ)

−L0(ρ) 0 Q(ρ) 0

0 −Q(ρ) 0 L0(ρ)

Q(ρ) 0 −L0(ρ) 0

 . (5.5.1)

This is previously given in eq. (5.1.13). This vacuum matrix is brought to the form of mass-

splitting case as in eq. (5.4.1) by a unitary transformation in (5.1.14) as

UTXU =


0 L0 +Q 0 0

−L0 −Q 0 0 0

0 0 0 L0 −Q

0 0 −L0 +Q 0

 =


0 Lp 0 0

−Lp 0 0 0

0 0 0 Lm

0 0 −Lm 0

 , (5.5.2)

where Lp/m = L0 ± Q. The NJL interaction is turned on once Q ̸= 0, i.e. LP > L0. This is

realized by turning on two UV“masses”. One is interpreted as the fermion mass m, which is held

fixed, corresponding to the embedding L0. The other one is interpreted as an NJL contribution,

which we vary (increase from 0, pass m and beyond), corresponding to the embedding Q. At the

point when L0 = Q, there is a subtlety that needs a further discussion. If Q keeps increasing,

Lm will become negative and it’s profile will lie below the axis in fig. 5.1. We employed a phase

rotation to flip the profile of Lm above the axis at this point. This is actually the preferred

vacuum, since if consider the string picture, the strings stretching between the Lp and Lm branes

have their length (thus the bound states’ masses) minimized if Lm is flipped. We apply such

a rotation for L ≥ Q, where to arrive at the correct vacuum, we used the transformation in

eq. (5.1.14)

UTXU =


0 L0 +Q 0 0

−L0 −Q 0 0 0

0 0 0 −L0 +Q

0 0 L0 −Q 0

 =


0 Lp 0 0

−Lp 0 0 0

0 0 0 −Lm

0 0 Lm 0

 . (5.5.3)
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Note that at this point Lm = L − Q. Later in the calculations, we will rotate this too, to

Lm = Q− L.

From this transformation we can see that the vacuum eq. (5.5.1) will break the SU(4) to

SU(2) × SU(2). More precisely, L0 will break the generators T 8 with the associated GB π2,

T 10(π4), T
11(π3), T

14(π1), T
15(π5) and T 16(S). Q will break T 4(Q1), T

5(Q2), T
6(Q3), T

9(Q5),

T 11(S), T 16(π3). The T 1+7,2+12,3+13 are the invariant custodial SU(2)D. T 1−7,2−12,3−13 form

a second SU(2) which is broken explicitly by the NJL interactions through the NJL boundary

conditions.

The equations of motion for Lp,m are

∂ρ
(
ρ3∂ρLp

)
− ρ∆m2Lp −

4B(L2
p − L2

m)

ρ
Lp = 0,

∂ρ
(
ρ3∂ρLm

)
− ρ∆m2Lm −

4B(L2
m − L2

p)

ρ
Lm = 0,

(5.5.4)

where ∆m2 = ∆m2
[
log
(√

ρ2 + 1
2(L2

p + L2
m)
)]

≡ ∆m2(njl), r
2
njl = ρ2+ 1

2(L2
p+L2

m). The radial

direction is now r2 = diag(r2p, r
2
p, r

2
m, r

2
m), where r2p = ρ2 + (L0 +Q)2, r2m = ρ2 + (L0 −Q)2. To

track the NJL contribution properly, we rotate back to the L0-Q basis, where the equations are

∂ρ
(
ρ3∂ρL0

)
− ρ∆m2L0 −

16BQ2

ρ
L0 = 0,

∂ρ
(
ρ3∂ρQ

)
− ρ∆m2Q− 16BL2

0

ρ
Q = 0.

(5.5.5)

In the UV, L0 should include the fermion mass, i.e. L0 ∼ m+ c0/ρ
2 where Q includes the NJL

contribution Q ∼ J + ⟨O⟩/ρ2. Translate to the Lp-Lm basis, their UV behaviors are

Lp(ρUV ) ∼ J +m+
⟨O⟩
ρ2

+
c0
ρ2
, Lm(ρUV ) ∼ m− J +

c0
ρ2

− ⟨O⟩
ρ2

. (5.5.6)

More precisely, the NJL source term is introduced by the higher order operator [53, 176]

LUV = GO†O, J = G⟨O†⟩, (5.5.7)

where

G =
g2s

Λ2
UV

or g2s =
JΛ2

UV

⟨O†⟩
. (5.5.8)

ΛUV is the UV cut-off. Below the critical value of g2s , the source term is zero J = mUV = 0.

Once the source term mUV is switched on by hand, the g2s is above the critical value, i.e. the
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Figure 5.8: The vacuum of the SU(2) gauge theory with NJL interactions. IR masses are plotted
against the scalar NJL coupling g2 in units of the vector mass MV0 , B = 0.1, mL = 0.12MV0 ,
ΛUV = 12.1MV0 . Initially we plotted the IR masses of L+Q and L−Q. As soon as Q > L, we flip
the L−Q and show the IR mass of Q− L.

NJL interaction is present. The vev of the dual operator is read off by

Q′(ΛUV )

−2Λ−3
UV

= ⟨O†⟩, J = mUV − ⟨O†⟩
Λ2
UV

. (5.5.9)

Incorporating the discussion above, we set the following boundary conditions in solving the

embeddings

Lp(ρIR,p) = ρIR,p, L′
p(ρIR,p) = 0, Lp(ΛUV ) = mUV,p

Lm(ρIR,m) = −ρIR,m, Lm(ΛUV ) = mUV,m, Lm(ρ) ≡ −Lm(ρ), mUV,m < 0

Lm(ρIR,m) = ρIR,m, Lm(ΛUV ) = mUV,m, mUV,m > 0

L′
m(ρIR,m) = 0.

(5.5.10)

We see that at the point when Lm = L0−Q = 0, we rotate the solution to Lm ≡ −Lm = Q−L0.

We show the profiles for the two embeddings Lp,m in fig. 5.8, where L0(UV ) is fixed to 0.12MV0 ,

and B = 0.1. This shows an expected second order phase transition at the critical value around

g2s ∼ 17. The profiles increase fast since the NJL interaction is raising the Q vev to the cut-off

scale ΛUV . Since the composite Higgs model is realized when the two vacuums are only slightly

misaligned, this implies that the transition from the composite Higgs model to the techincolor

model is highly fine-tuned in g2s .
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5.5.2 Fluctuations

Since the vacuums can be rotated to the same form with two split masses, the equations of

motion for the fluctuations can be read off from the split-mass scenario with L1,6 → Lp,m.

However, one needs to take care of the mixed states in this case. We show all the equations of

motion in appendix G including the corresponding boundary conditions.

The inclusion of the NJL contribution leads to non-trivial UV boundary conditions for some

scalar fields. As can be seen from the fluctuation matrix, if we rotate it in the basis of eq. (5.5.1),

the fluctuation matrix becomes

Xf =


0 σ +Q4 + iS + iπ3 −Q2 − π2 − iπ1 − iQ1 Q5 + π4 + iQ3 + iπ5

−σ −Q4 − iS − iπ3 0 −Q5 + π4 + iQ3 − iπ5 −Q2 + π2 + iQ1 − iπ1

π2 +Q2 + iQ1 + iπ1 Q5 − π4 − iQ3 + iπ5 0 σ −Q4 + iS − iπ3

−Q5 − π4 − iπ5 − iQ3 Q2 − π2 − iQ1 + iπ1 −σ +Q4 − iS + iπ3 0

 .

(5.5.11)

The Q1,2,3,4 fields feel the NJL. The π1,2,3,4 are simply phases of Qi thus they are not affected

by the NJL contribution.

Even though Q1,2,3,5 have the same set of equations of motion, only the Q1,2,3 feel the NJL

interaction while the Q5 doesn’t. Therefore we impose the NJL boundary condition to Q1,2,3

f(ΛUV ) =
(g2s + 1)c

Λ2
UV

, f ′(ΛUV ) = −2Λ−3
UV c, f ′(IR) = 0,

ϕ(ΛUV ) = ±
√

2 +
ΛUV b

−2
, ϕ′(ΛUV ) = b, ϕ′(IR) = 0,

(5.5.12)

where f denotes the fields that matches with the NJL coupling in the UV and ϕ denotes the

ϕjs, which asymptotes to ±
√

2 in the UV before and after the unitary rotation. c is the vev,

corresponding to the ⟨O⟩ in the above discussion. g2s is the NJL coupling found in solving

the embeddings. For the points below the critical value of g2s , i.e. when Q = 0, one needs to

apply the NJL boundary condition to the fluctuations with g2s values put in by hand. The NJL

interaction split the 4-plet of Q1,2,3,5 to a triplet Q1,2,3 and a singlet Q5 under SU(2)V .

Q4 and σ are fluctuations around the corresponding vacuum, their equations of motion are
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Figure 5.9: Scalar bound states’ masses vary with increasing scalar NJL coupling g2s , with gauge
group SU(2), B = 0.1, mL = 0.12MV0

, UV = 12.1MV0
.

mixed

∂ρ
(
ρ3∂ρσ

)
− ρ∆m2σ − ρL2

0

r4njl
∆m2′σ − 16B

ρ
Q2σ +

ρ3M2

2

(
1

r4p
+

1

r4m

)
σ

−32BL0Q

ρ
Q4 −

L0Qρ

r2njl
∆m2′Q4 +

ρ3M2

2

(
1

r4p
− 1

r4m

)
Q4 = 0,

∂ρ
(
ρ3∂ρQ4

)
− ρ∆m2Q4 −

ρQ2

r4njl
∆m2′Q4 −

16B

ρ
L2
0Q4 +

ρ3M2

2

(
1

r4p
+

1

r4m

)
Q4

−32BL0Q

ρ
σ − L0Qρ

r2njl
∆m2′σ +

ρ3M2

2

(
1

r4p
− 1

r4m

)
σ = 0.

(5.5.13)

In the above equations ∆m2′ = ∂∆m2

∂arg , arg = log(rnjl) is the argument of ∆m2, where rnjl =

ρ2 + 1
2(L2

p+L2
m). We impose the NJL boundary condition to Q4 while require the σ asymptotes

to 0 in the UV. All the other fields are required to vanish in the UV. We plot the scalar mass

against the NJL coupling g2s in fig. 5.9 for B = 0.1, m = 0.12MV0 and ΛUV = 12.1MV0 .

From this plot we can see that, below the critical coupling, only Q1,2,3,4 are affected by the

NJL interaction. Their masses fall to 0 at the critical coupling and their potential will become

unstable if Q increase the NJL coupling across the critial value.

Above the critical coupling, the Q1,2,3 have massless Goldstone solutions corresponding to the

breaking of an SU(2) axial symmetry. The Q4 field is like a σ field in the technicolor model,

which grows sharply with the NJL vev Q. The other scalar fields are insensitive to the NJL

interaction until the Q vev becomes larger than the L0 vev, where their masses increases together

with the ever larger NJL coupling. The π1,2,4 form a triplet that is degenerate with the π5 which

is a singlet. The other scalars σ, Q5 S± = S ± π3 are singlets.

In solving the vectors, we require them to vanish in the UV. We plot their spectrum against the
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Figure 5.10: Spin-1 bound states’ masses. The multiplets are: two triplets associated with generators
1± 13, 2± 7, 3± 12; two sets of degenerate triplet and singlet associated with generators 4, 5, 6, 9 and
8, 10, 14, 15; and two singlets associated with generators 16 ± 11.

NJL coupling g2s in fig. 5.10. The vectors V1+13,2+7,3+12 and V1−13,2−7,3−12 transform as 3 of

SU(2)V ((1,3)+(3,1) of SU(2)L×SU(2)R). The axial vectors A4,5,6,9 and A8,10,14,15 transform

both as 3 + 1 of SU(2)V ((2,2) of SU(2)L × SU(2)R). The rest two axial vectors A16±11 are

both singlets of SU(2)V (SU(2)L × SU(2)R). Below the critical coupling, their masses behave

simply as in the degenerate case. Once the NJL interaction sets in, some of the vectors become

axial-vectors due to the additional symmetry breaking. All of the masses increase sharply with

the NJL coupling.

We also compute the decay constants and plot them against the NJL coupling in fig. 5.11. They

increase also with the NJL coupling in the same manner as the spectrum. Especially we show

in fig. 5.11(d) the ratio of the EW breaking vev over the global symmetry breaking vev. As

shown by the sharp rise after the critical coupling, the transition from the composite Higgs to

the technicolor requires a highly fine-tuned g2s .
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Chapter 6

Conclusions and Outlook

In this thesis, we show the construction of a holographic model that includes both the composite

Higgs and the technicolor models and manifests a transition between the two phases. Our

starting point is an abelian dynamical AdS/YM model developed in [52, 53]. This is a bottom-

up model, which encodes the essence of the holographic top-down model descend from the string

theory and the gauge/gravity duality. Especially, the model utilizes the property that the radial

direction of the AdS space is dual to an RG-flow in the field theory, and incorporates the gauge

theory running explicitly through the running of the anomalous dimension of the dual quark’s

mass. In this way, the symmetry breaking in the dual theory is realized dynamically in the

holographic model, instead of placing hard cut-offs as an ansatz. We combined this model with

a top-down model that shares a non-abelian structure in the bulk gauge theory from [178].

This results in the non-abelian AdS/YM theory developed in chapter 4. While constructing

the model, we also developed the corresponding numerical tools to solve the coupled equations

in the holographic language. As a proof, we tested our construction against the QCD meson

spectrum. Our results are at 20%, most of the cases 10% level of the experimental data. The

finer structure of the QCD meson spectrum is predicted, which shows the power of incorporating

the non-abelian structure in the holographic model.

Having tested the first principles, we move on to achieve the aim of our project, which is

the holographic composite Higgs model. There have been various composite Higgs models’

constructions in the field theory, some of them also descend from models containing extra

dimensions. The composite Higgs model we realized was initially suggested in [62, 80, 97].

The model realizes a Sp(2N) gauge symmetry with two Dirac fermions in the fundamental.

In particular, the mass eigenstates of the pNGBs are admixtures of the pNGBS from two
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different symmetry breakings — composite Higgs like and technicolor like (EW). By dialing

the mixing angle, one switches from symmetry conserved phase to a composite Higgs phase

(when the mixing angle is tiny) and then to the technicolor phase. We construct a holographic

model that incorporates these properties in chapter 5. This is realized using the non-abelian

holographic model we developed. In that we discussed three scenarios — degenerate and non-

degenerate flavor structure and inserting both fermion masses and the NJL interaction term.

We looked first into the model with degenerate flavor structure, this corresponds to a pure

composite Higgs model when the UV fermion mass is turned on. Then we split the flavor

structure by giving different masses to femions that are associated to different flavors. This

simply corresponds to a composite Higgs model with non-abelian flavor structure. Then we

move on to insert an NJL interaction term holographically on top of the degenerate scenario.

Such a construction manifests a superposition of two different symmetry breakings — one is

the spontaneous symmetry breaking of the global flavor group, the other is the EW symmetry

breaking realized in the technicolor sense. By performing a unitary rotation, one can rotate this

scenario back to the non-degenerate flavor structure, which is the second scenario we considered.

The phase transition from the composite Higgs model to the technicolor model is controlled by

the NJL coupling constant gs, which is highly fine tuned. At each step we calculated the bound

states’ spectrum and their decay constants. For the results that have lattice data to compare

with, they show a good agreement.

Of course much could be done along this line. First we need to emphasize that our constructions

are restricted to the bosonic part of the theory. Incorporating the non-abelian structure will

also result in a finer baryon spectrum in the holographic model. One way to include the baryon

states is to add bulk fermion fields. In the original top-down language, they are dual to the

superpartners of the mesons, the so-called mesinos. One can approximate the baryon states

with these mesino states as suggested in [31]. For abelian dynamical AdS/YM model this has

already been done in [52, 53]. These baryon states are potential candidates for top-partners,

which are essential ingredients when constructing composite Higgs model that explains the large

mass hierarchy of the top quark. Aside from the baryons, one can also construct holographic

models using the technique we developed to let it dual to different composite Higgs models. The

advantage is that such a holographic model provides naturally a UV-completion for the field

theory. Possible minimal UV-complete composite Higgs models that can be made holographic

are SU(2N) → Sp(2N) and SU(N) × SU(N) → SU(N). The potential of our non-abelian

dynamical AdS/YM model is certainly not restrict to composite Higgs models. One can put

on the dual theory any non-conformal Yang-Mills field theory with non-abelian structure and
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make predictions on the bound states’ spectrum and other physical observables. Also, such a

holographic model serves as a good alternative of lattice calculations. We hope our work could

stimulate more lattice studies on this subject, and potential model building in the BSM physics.
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Appendix A

Derivation of Equations of Motion in the

Top-Down Model

In this appendix we show the calculations of some of the equations in the top-down non-abelian

model in [178]. The calculations in the non-abelian bottom-up model is based on this.

A.1 Notations

We unify the notations for this appendix section. Indices are assigned as follows: m,n= 0,...,9;

r, s, p, q, t= 0,...,7; a, b= 5, 6, 7; µ, ν, α, β= 0,...,3; ρ = 4.

The metric is

ds210 = e
Φ(r)
2

(
r2

R2
A2(r)ηµνdx

µdxν +
R2

r2
[
dρ2 + ρ2dΩ2

3 + (dX8)2 + (dX9)2
])

, (A.1.1)

and therefore

G88 = e
Φ(r)
2
R2

r2i
δ88 G88 = e

Φ(r)
2
R2

r2i
δ99. (A.1.2)

The ārs:

ārs
∣∣∣∣
wi

=


R2

A2
i r

2
i
e−

Φ(ri)

2 ηµν

r2i
R2

e−
Φ(ri)

2

1+(∂ρw2
i )

r2i
R2ρ2

e−
Φ(ri)

2 gab

 , (A.1.3)
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where Ai = A(ri).

F̄ =e−Φ(ri)
√
−det ārs = e−Φ(ri)

[
−det(Grs +G99∂rX̄

9∂sX̄
9)
] 1
2

=e−Φ(ri) det

−

Gµν

Gρρ +G99∂ρX̄
9∂ρX̄

9

Gab




1
2

=e−Φ(ri)

[
−
(
e

Φ(ri)

2

)4( r2i
R2

A(ri)
2

)4

(−1)(1)3
(
e

Φ(ri)

2
R2

r2i
+ e

Φ(ri)

2
R2

r2i
(∂ρwi)

2

)
×
(
e

Φ(ri)

2

)3(R2

r2i
ρ2
)3

det(gab)

] 1
2

=e−Φ(ri)

[(
e

Φ(ri)

2

)8( r2i
R2

)4

A(ri)
8

(
R2

r2i

)4 (
1 + (∂ρwi)

2
)
ρ6 det(gab)

] 1
2

=eΦ(ri)ρ3A(ri)
4
√

det(gab) [1 + (∂ρwi)2],

(A.1.4)

Fi =
eΦ(ri)A4

i√
1 + (∂ρwi)2

, Kri = ∂r2 log
(
eΦ(ri)A4

i

)
. (A.1.5)

A.2 Scalar Lagrangian, Only ϕ8

In this section we compute the ϕ8 part of the scalar Lagrangian, corresponding to eq.(33) in

[178].

Consider only ϕ8 fluctuations, i.e. set ϕ9 = As = 0, then the two-flavor D7-brane action [178]

SNf=2 = τ7

∫
d8ξ STr

{
e−Φ

√
−det(ārs)

(
1 +

1

2
Trrs(ā

−1a(1)) +
1

8

(
Trrs(ā

−1a(1))
)2

− 1

4
Trrs

(
(ā−1a(1))2

)
+

1

2
Trrs(ā

−1a(2)) − 1

8
G88G99

(
(ϕ81)

2 + (ϕ82)
2
)
v2 + ...

)} (A.2.1)

reduces to

SNf
= τ7

∫
d8ξ STr

e−Φ
√
−det(ārs)︸ ︷︷ ︸
F̄

[
1 +

1

2
Trrs(ā

−1a(2)) + (
1

8
G88G99)

(
(ϕ81)

2 + (ϕ82)
2
)
v2 + ...

] .

(A.2.2)
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So the Lagrangian is

L(2)
ϕ8

=STr

{
e−Φ

√
−det(ārs)

[
1 +

1

2
Trrs(ā

−1a(2)) − (
1

8
G88G99)

(
(ϕ81)

2 + (ϕ82)
2
)
v2 + ...

]}
= STrF̄︸ ︷︷ ︸

term A

+
1

2
STr

[
F̄Trrs(ā

−1a(2))
]

︸ ︷︷ ︸
term B

+
1

8
STr

[
(F̄G88G99)

(
(ϕ81)

2 + (ϕ82)
2
)
v2 + ...

]
.

(A.2.3)

The last term need not to be modified, we only need to calculate the first two terms. In the

Lagrangian, term A is

term A = STrF̄ = STr

(
∂F̄

∂r2
dr2
)

=
∂F̄

∂r2
dr2
∣∣∣∣
w1

+
∂F̄

∂r2
dr2
∣∣∣∣
w2

, (A.2.4)

since r2 = ρ2 +
(
ωτ0 + vτ3 + (ϕ9)

)2
+
(
ϕ8
)2

, when ϕ9 = 0 we have

dr2 = (ϕ8)2
∣∣∣∣
ϕ9=0

=
1

4

ϕ8+ ϕ812

ϕ821 ϕ8−

ϕ8+ ϕ812

ϕ821 ϕ8−

 =
1

4

(ϕ8+)2 + ϕ812ϕ
8
21 ϕ8+ϕ

8
12 + ϕ812ϕ

8
−

ϕ8+ϕ
8
21 + ϕ821ϕ

8
− (ϕ8−)2 + ϕ812ϕ

8
21

 ,

(A.2.5)

where dr2 is interpreted as the fluctuations thus the ϕ8. Therefore when evaluating dr2 on the

branes we have

dr2
∣∣∣∣w1
w2

=
1

4

[
(ϕ8±)2 + ϕ812ϕ

8
21

]
=

1

4

[
(ϕ8±)2 + (ϕ81 − iϕ82)(ϕ

8
1 + iϕ82)

]
=

1

4

[
(ϕ8±)2 + (ϕ81)

2 + (ϕ82)
2
]
,

(A.2.6)

so we get

Term A =
1

4
∂r2F̄

∣∣∣∣
w1

[
(ϕ8+)2 + (ϕ81)

2 + (ϕ82)
2
]

+
1

4
∂r2F̄

∣∣∣∣
w2

[
(ϕ8−)2 + (ϕ81)

2 + (ϕ82)
2
]
. (A.2.7)

We then calculate Term B:

Term B =
1

2
STr

[
F̄Trrs(ā

−1a(2))
]

=
1

2
STr

[
F̄ (ā−1)sr(a

(2))rs

]
=

1

2
Tr
[
F̄ (ā)rsG88∂rϕ

8∂sϕ
8
]
,

(A.2.8)

where

∂rϕ
8∂sϕ

8 =
1

4

∂rϕ8+ ∂rϕ
8
12

∂rϕ
8
21 ∂rϕ

8
−

∂sϕ8+ ∂sϕ
8
12

∂sϕ
8
21 ∂sϕ

8
−

 =
1

4

∂rϕ8+∂sϕ8+ + ∂rϕ
8
12∂sϕ

8
21 ∂rϕ

8
+∂sϕ

8
12 + ∂rϕ

8
12∂sϕ

8
−

∂rϕ
8
21∂sϕ

8
+ + ∂rϕ

8
−∂sϕ

8
21 ∂rϕ

8
21∂sϕ

8
12 + ∂rϕ

8
−∂sϕ

8
−

 .

(A.2.9)
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And

F̄ ārsG88 =

F̄ ā
rsG88

∣∣∣∣
w1

0

0 F̄ ārsG88

∣∣∣∣
w2

 . (A.2.10)

Then multiply the matrices F̄ ārsG88 and ∂rϕ
8∂sϕ

8 and take the trace in the flavor space, we

find the Term B is:

Term B =
1

8

[
F̄ ārsG88

∣∣∣∣
w1

(∂rϕ
8
+∂sϕ

8
+ + ∂rϕ

8
12∂sϕ

8
21) + F̄ ārsG88

∣∣∣∣
w2

(∂rϕ
8
−∂sϕ

8
− + ∂rϕ

8
12∂sϕ

8
21)

]

=
1

8

[
F̄ ārsG88

∣∣∣∣
w1

(∂rϕ
8
+∂sϕ

8
+ + ∂rϕ

8
1∂sϕ

8
1 + ∂rϕ

8
2∂sϕ

8
2 − i (∂rϕ

8
2∂sϕ

8
1 − ∂rϕ

8
1∂sϕ

8
2)︸ ︷︷ ︸

=0, we can only have r=s

+ F̄ ārsG88

∣∣∣∣
w2

(+ → −)

]
=

1

8

[
F̄ ārsG88

∣∣∣∣
w1

∂rϕ
8
+∂sϕ

8
+ + F̄ ārsG88

∣∣∣∣
w2

∂rϕ
8
−∂sϕ

8
−

]

+
1

8

(
F̄ ārsG88

∣∣∣∣
w1

+ F̄ ārsG88

∣∣∣∣
w2

)(
∂rϕ

8
1∂sϕ

8
1 + ∂rϕ

8
2∂sϕ

8
2

)
,

(A.2.11)

where as noted in the second step, we can only have diagonal terms (r = s) since ārs is diagonal.

Finally add the three terms together we arrive at the equation

L(2)
ϕ8

=
1

4
∂r2F̄

∣∣∣∣
w1

[
(ϕ8+)2 + (ϕ81)

2 + (ϕ82)
2
]

+
1

4
∂r2F̄

∣∣∣∣
w2

[
(ϕ8−)2 + (ϕ81)

2 + (ϕ82)
2
]

+
1

8

[
F̄ ārsG88

∣∣∣∣
w1

∂rϕ
8
+∂sϕ

8
+ + F̄ ārsG88

∣∣∣∣
w2

∂rϕ
8
−∂sϕ

8
−

]

+
1

8

(
F̄ ārsG88

∣∣∣∣
w1

+ F̄ ārsG88

∣∣∣∣
w2

)(
∂rϕ

8
1∂sϕ

8
1 + ∂rϕ

8
2∂sϕ

8
2

)
+

1

8

[(
F̄G88G99

∣∣∣∣
w1

+ F̄G88G99

∣∣∣∣
w2

)(
(ϕ81)

2 + (ϕ82)
2
)
v2 + ...

]
.

(A.2.12)

The equation of motion of ϕ81,2± can be easily derived using Euler-Lagrange equation.
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A.3 Equation of Motion of ϕ8
1,2 Fields, Non-SUSY Case

Use the Lagrangian eq. (A.2.12), we get the eom of ϕ8i (i = 1, 2) are:

∂L(2)
ϕ8

∂ϕ8i
− ∂p

∂L(2)
ϕ8

∂(∂pϕ8i )
= 0

=
1

4

(
∂r2F̄

∣∣∣∣
w1

+ ∂r2F̄

∣∣∣∣
w2

)
· 2ϕ8i︸ ︷︷ ︸

term A

−v
2

8

[(
F̄G88G99

) ∣∣∣∣
w1

+
(
F̄G88G99

) ∣∣∣∣
w2

]
· 2ϕ8i︸ ︷︷ ︸

term B

−∂p

{
1

8

[(
F̄G88ā

rs
) ∣∣∣∣
w1

+
(
F̄G88ā

rs
) ∣∣∣∣
w2

]
· ∂rϕ8i δps · 2

}
︸ ︷︷ ︸

term C

.

(A.3.1)

In the following we calculate the three terms separately:

term A:

∂r2F̄

∣∣∣∣
wi

= ∂r2

(
eΦ(ri)ρ3A4

i

√
det(gab) [1 + (∂ρwi)2]

)
= eΦ(ri)A4

i ∂r2 log
(
eΦ(ri)A4

i

)
ρ3
√

det gab

√
1 + (∂ρwi)2

= Fiρ
3
[
1 + (∂ρwi)

2
]
∂r2 log

(
eΦ(ri)A4

i

)√
det gab

= Fiρ
3
[
1 + (∂ρwi)

2
]
Kri

√
det gab,

(A.3.2)

where Fi and Kri are defined in eq. (A.1.5). So we get

term A =
1

2
ρ3
√

det gab
{
F1

[
1 + (∂ρw1)

2
]
Kr1 + 1 → 2

}
ϕ8i . (A.3.3)

term B:

− v2

8

[(
F̄G88G99

) ∣∣∣∣
w1

+
(
F̄G88G99

) ∣∣∣∣
w2

]
· 2ϕ8i

= − v2

4
ρ3
√

det gab

e2Φ(r1)A4
1

(
R

r1

)4√
1 + (∂ρw1)2︸ ︷︷ ︸

≡G1

+1 → 2

ϕ8i
= − v2

4
ρ3
√

det gab(G1 +G2)ϕ
8
i .

(A.3.4)
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term C:

∂p

[(
F̄G88ā

rs
) ∣∣∣∣
w1

· ∂rϕ8i

]

=∂µ

[(
F̄G88ā

νµ
) ∣∣∣∣
w1

· ∂νϕ8i

]
+ ∂ρ

[(
F̄G88ā

ρρ
) ∣∣∣∣
w1

· ∂ρϕ8i

]
+ ∂a

[(
F̄G88ā

ba
) ∣∣∣∣

w1

· ∂bϕ8i

]

=

(
eΦ(r1)A4

i ρ
3
√

det gab[1 + (∂ρw1)2]e
Φ(r1)

2
R2

r21
e−

Φ(r1)
2

R2

A2
1r

2
1

)
w1

∂µ∂µϕ
8
i︸ ︷︷ ︸

−k2ϕ8i=M2ϕ8i

+∂ρ

[
eΦ(r1)A4

i ρ
3
√

det gab[1 + (∂ρw1)2]e
Φ(r1)

2
R2

r21

r21
R2

e−
Φ(r1)

2

1 + (∂ρw1)2

]
w1

∂ρϕ
8
i + [...]∂2ρϕ

8
i

+

(
eΦ(r1)A4

i ρ
3
√

det gab[1 + (∂ρw1)2]e
Φ(r1)

2
R2

r21
e−

Φ(r1)
2

r21
ρ2R2

)
w1

∂a∂aϕ
8
i︸ ︷︷ ︸

−l(l+2)ϕ8i

=F1ρ
3
[
1 + (∂ρw1)

2
]√

det gab
1

A2
1

(
R

r1

)4

M2ϕ8i +

[
(∂ρF1)ρ

3
√

det gab + 3
ρ3

ρ
F1

√
det gab

]
∂ρϕ

8
i

+F1ρ
3
√

det gab∂
2
ρϕ

8
i − F1ρ

3
√

det gab
[
1 + (∂ρw1)

2
] l(l + 2)

ρ2
ϕ8i .

(A.3.5)

So term C is

term C = −1

4
F1ρ

3
√

det gab

{[
1 + (∂ρw1)

2
] [ 1

A2
1

(
R

r1

)4

M2 − l(l + 2)

ρ2

]
+ ∂ρ (logF1) ∂ρ

}
ϕ8i

− 1

4
F1ρ

3
√

det gab
3

ρ
∂ρϕ

8
i −

1

4
F1ρ

3
√

det gab∂
2
ρϕ

8
i + 1 → 2.

(A.3.6)

Combine eq. (A.3.3), eq. (A.3.4) and eq. (A.3.6) we get the eom of ϕ8i :

1

2
ρ3
√

det gab
{
F1

[
1 + (∂ρw1)

2
]
Kr1 + 1 → 2

}
ϕ8i −

v2

4
ρ3
√

det gab(G1 +G2)ϕ
8
i

− 1

4
F1ρ

3
√

det gab

{[
1 + (∂ρw1)

2
] [ 1

A2
1

(
R

r1

)4

M2 − l(l + 2)

ρ2

]
+ ∂ρ (logF1) ∂ρ

}
ϕ81

− 1

4
F1ρ

3
√

det gab
3

ρ
∂ρϕ

8
i −

1

4
F1ρ

3
√

det gab∂
2
ρϕ

8
i + 1 → 2,

(A.3.7)
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→ (F1 + F2)∂
2
ρϕ

8
i + (F1 + F2)

3

ρ
∂ρϕ

8
i

+

F1


[
1 + (∂ρw1)

2
] [ 1

A2
1

(
R

r1

)4

M2 − l(l + 2)

ρ2
− 2Kr1

]
︸ ︷︷ ︸

≡K1

+∂ρ (logF1) ∂ρ

+ v2G1


︸ ︷︷ ︸

≡N1

ϕ8i .

+ [1 → 2]ϕ8i = 0

⇒(F1 + F2)∂
2
ρϕ

8
i + (F1 + F2)

3

ρ
∂ρϕ

8
i + (N1 +N2)ϕ

8
i = 0.

(A.3.8)

So the eom of ϕ81,2 is: (
∂2ρ +

3

ρ
+
N1 +N2

K1 +K2

)
ϕ8i = 0. (A.3.9)

A.4 Vector Part (As and ϕ9), eq.(40)

From the full Lagrangian eq. (A.2.1), the terms contributing to the Lagrangian L(2)
A,ϕ9

are:

a(1)rs = T−1Frs

a(2)rs = G99

(
−i[Ar, X̄9]∂sϕ

9 − i∂rϕ
9[As, X̄

9] − [Ar, X̄
9][As, X̄

9] + ∂rϕ
9∂sϕ

9
)
.

(A.4.1)

Calculate first a
(2)
rs , start from the commutators, we have:

[Ar, X̄
9] = [A0

rτ
0 +A1

rτ
1 +A2

rτ
2 +A3

rτ
3, wτ0 + vτ3]

= A1
rv[τ1, τ3] +A2

rv[τ2, τ3]

= −iA1
rvτ

2 + iA2
rvτ

1,

(A.4.2)

where the last step follows from [τa, τ b] = 1
4 [σa, σb] = 1

4 · 2iϵabcσ
c = 1

2 iϵabcσ
c = iϵabcτ

c, the σa

are Pauli matrices. Therefore we have

− i[Ar, X̄
9]∂sϕ

9 − i∂rϕ
9[As, X̄

9]

=(−vÃ1
Rτ

1 + vÃ2
rτ

1 − ∂rϕ
9
2τ

2 − ∂rϕ
9
1τ

1)(∂sϕ
9
0τ

0 + ∂sϕ
9
1τ

1 + ∂sϕ
9
2τ

2 + ∂sϕ
9
3τ

3)

+ ∂sϕ
9(1st braket from last line)

= − Ã1
r∂sϕ

9
0{τ2, τ0} + ...(only {τa, τa} terms ̸= 0)

=
v

2

(
−Ã1

r∂sϕ
9
2 + Ã2

r∂sϕ
9
1

)
− 1

2

(
∂rϕ

9
2∂sϕ

9
2 + ∂rϕ

9
1∂sϕ

9
1

)
.

(A.4.3)
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The term ∂rϕ
9∂sϕ

9 has already been calculated before in the ϕ8 part, then the last term to be

considered is

−[Ar, X̄
9][As, X̄

9] =
v2

4

(
Ã1
rÃ

1
s + Ã2

rÃ
2
s

)
+

1

4

(
∂rϕ

9
2∂sϕ

9
2 + ∂rϕ

9
1∂sϕ

9
1

)
+
v

2
∂rϕ

9
2Ã

1
s −

v

2
∂rϕ

9
1Ã

2
s.

(A.4.4)

Combining all these pieces together we have

ā(2)rs =
1

4

∂rϕ9+∂sϕ9+
∂rϕ

9
−∂sϕ

9
−

+ v2

Ã1
rÃ

1
s + Ã2

rÃ
2
s

Ã1
rÃ

1
s + Ã2

rÃ
2
s

 . (A.4.5)

For constant wi, ϕ
8
i = 0, ā

(2)
rs = T−1Frs. ā

(2)
rs ∝ Frs, which is anti-symmetric. Since ā−1 is a

symmetric metric, so

Trrs(ā
−1a(1)) =

[
Trrs(ā

−1a(1))
]2

= 0

Trrs

[
(ā−1a(1))2

]
= ārpa

(1)
pt ā

tqa(1)qr = ārpāsqF̃psF̃qr

where F̃psF̃qr =
1

4

F̃+
psF̃

+
qr + F̃ 12

ps F̃
21
qr ...

... F̃−
psF̃

−
qr + F̃ 21

ps F̃
12
qr

 .

(A.4.6)

Therefore

L(2)

Ã
= STr

{
e−Φ

√
−det ārs

(
−1

4
Trrs

[(
ā−1a

(1)

Ã

)2]
+

1

2
Trrs

(
ā−1a

(2)

Ã

))}
= −1

4
STr

[
F̄ ārpāsqF̃psF̃qr

]
+

1

2
STr

[
F̄ ārsā(2)sr

]
=

1

4

{
1

4

(
F̄ ārpāsq

)
w1
F̃+
rsF̃

+
pq +

1

4

(
F̄ ārpāsq

)
w2
F̃−
rsF̃

−
pq

+
1

4

[(
F̄ ārpāsq

)
w1

+
(
F̄ ārpāsq

)
w2

] (
F̃ 1
rsF̃

1
pq + F̃ 2

rsF̃
2
pq

)
+
v2

2

[(
F̄ ārsG99

)
w1

+
(
F̄ ārsG99

)
w2

] (
Ã1
sÃ

1
r + Ã2

sÃ
2
r

)}
.

(A.4.7)

Equations of motion follow straightforwardly.
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Appendix B

A Brief Summary of the Implementation

of ∆m2 and the Running

In this section we summarize some backgrounds of inserting the gauge theory running into

holographic models that is first introduced in section 3.6.

Initially the idea is inspired by the papers of Jarvinen and Kiritsis [166] where a two-loop

running coupling is generated by imposing potential for the tachyon field that is dual to the

chiral condensate. The authors in [164] then extend this idea, matching directly the running

dilaton eϕ in the D3/D7 construction to be the two-loop running QCD gauge coupling λ (which

we called α in the text.). Then the vacuum action is

S =

∫
dρλ(r)3

√
1 + L′2 =

∫
dρ

(
1

2
λ(r)

∣∣∣
L=0

ρ3L′2 + ρ3
dλ

dL2

∣∣∣
L=0

L2

)
, (B.1)

where r2 = ρ2 +L2 is as defined in the main text. By a redefinition of ρ→ ρ̃ and L = ρ̃ϕ, where

ϕ is a scalar field, one finds that the action can be rewritten as a canonical scalar action of ϕ

with m2 = −3 in AdS5. The running then show up as a modification of the scalar mass

S =
1

2

∫
dρ̃ρ̃3

(
ρ̃2ϕ′2 +m2ϕ2

)
, (B.2)

where

m2 = −3 − δm2, δm2 = −λρ
5

ρ̃4
dλ

dρ
. (B.3)

By the holographic dictionary, m2 = ∆(∆ − 4), this scalar is dual to a dimension ∆ = 3

operator with a dimension 1 source in the UV. Since this scalar lives in the AdS4+1 space, it
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has a BF bound determined by m2R2 ≥ −d2

4 . R is the AdS curvature that is set to 1, d is the

spatial dimensionality of the AdS, which is 4. This gives a BF bound at m2 = −4. If naively

implementing only the running through the gauge coupling, then one finds the BF bound is

only violated for certain range of the ρ, in the IR it returns back to a conformal theory. To

have a QCD-like running, it is crucial to implement the running of anomalous dimension of

the quark mass: γm = 3 − ∆ where ∆ is the scaling dimension of the dual operator of ϕ, with

m2 = ∆(∆ − 4). Then the BF bound appears when γm = 1. Note that identifying the dilaton

factor with the running coupling already gives up matching to the explicit value of QCD running

coupling. But the chiral symmetry is guaranteed to happen when γ = 1.

In [41] the authors introduced the term ∆m2 that appears in the main text. The action con-

sidered for the vacuum is

S ∼
∫
dρ

1

2

(
ρ3(∂ρL)2 + ρ∆m2(ρ, L)L2

)
. (B.4)

Adding this term changes the mass term for ϕ from m2 = −3− δm2 to −3 + ∆m2(ρ). The dual

operators’ dimension is still determined by m2 = ∆(∆ − 4), this means when ∆m2 = −1, the

BF bound is violated. This simply shift the running dilaton contribution δm2 ∼ dλ
dρ in eq. (B.3)

to the term ∆m2, so ∆m2 encodes the effect of a dilaton that can deform the D7-probe’s

geometry which causes a chiral symmetry breaking. The form of ∆m2 becomes a choice. The

simplest choice is to use the duality [165], as shown in eq. (3.6.7). The running is implemented

through γ as in eq. (3.6.8) – eq. (3.6.10). Of course these are perturbative results, they are

however assumed to be valid in the low-energy regime as an approximation. Note that ∆m2

must depend on L, i.e. it should be a function of r instead of ρ. This is to remove the instability

from BF bound violation when L grows large [165].
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Appendix C

Derivation of an Equation of Motion

Using the General Parametrization

In this part we use the general parametrization X = (L + σ)eiαπ to show that it leads to a

complicated, fully mixed eom.

First we rewrite the action eq. (4.3.12) as

S =
1

2
Tr (O{A,B}) , O =

ρ3GMM

r2
, A = B† = (DMX)†. (C.1)

We have simplified the indices knowing that the metric GMN is diagonal. Then given an

arbitrary field f , the derivative acting on the action is1

∂fS =
1

2
∂fTr [O{A,B}] =

1

2
Tr [O∂f{A,B}] =

1

2
Tr [O ({∂fA,B} + {A, ∂fB})]

=
1

2
Tr
[
O
(
{A0, (∂fA

1)† + {A0, (∂fA
2)†} + {A1, (∂fA

1)†} + h.c.}
)]
,

(C.2)

where

A = A0 +A1 +A2 = O(f0) + O(f1) + O(f2) = B†, (C.3)

1∂df follows the same logic.
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and written in components

A0 = ∂ML
†,

A1 = −iαπ†∂ML† + ∂Mσ
† − iα∂Mπ

†L† + iL†A†
L,M − iA†

R,ML
†,

A2 = −α
2

2
π†2∂ML

† − iαπ†∂Mσ
† + (iα)2{π†, ∂Mπ†}L† − iα∂Mπ

†σ†,

+ i(−iα)π†L†A†
L,M + iσ†A†

L,M − iA†
R,M (−iαπ†)L† − iA†

R,Mσ
†.

(C.4)

If f = σc, the derivatives are

∂fA
1 = 0, ∂dfA

1 = T cδMN ,

∂fA
2 = −iα∂MπbT bT c + iT cAbL,MT

b − iAbR,MT
bT c,

∂dfA
2 = −iαπbT bT cδMN .

(C.5)

The equation of motion will be

1

2
∂N

∂

∂(σc)
− ∂

∂σc

=∂NTr
[
O
(
{A0, (∂dfA

1)†} + {A0, (∂dfA
2)†} + {A1, (∂dfA

1)†} + h.c.
)]

− 1

2
Tr
[
O
(
{A0, (∂fA

1)†} + {A0, (∂fA
2)†} + {A1, (∂fA

1)†} + h.c.
)]

=∂NSTr

{
O

[
(∂ML

†)(T cδMN ) + (∂ML
†)(iαπbT cT b)δMN

+ (iαπb∂ML
†T b + ∂Mσ

bT b + iα∂πbLT b − iAbL,MT
bL+ iAbR,MLT

b)(T cδMN ) + h.c.

]}
− STr

[
O
(

(∂ML
†)(iα∂Mπ

bT cT b − iAbL,M + iAbR,MT
cT b) + h.c.

)]
.

(C.6)

We use the notation STr[(A...)(B...)] = 1
2Tr[{A..., B...}], and the commutators and anti-commutators

are seen at the same level as (...) under permutation. The contributions from the scalar fields

are

∂NSTr
(
O∂Nσ

b(T b)(T c) + h.c.
)

=
1

2
∂ρ(ρ

3∂ρσ
b)Tr{T b, T c} + ρ3∂2Mσ

b 1

2
Tr

[
1

r4
{T b, T c}

]
.

(C.7)
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From π we get

∂NSTr
[
O
(
iαπb(∂NL

†)T cT b + iαπb(∂NL
†T b)(T c) + iα∂Nπ

b(LT b)(T c) + h.c.
)]

− STr
(
iαO∂Nπ

b(∂NL
†)T cT b + h.c.

)
=∂ρSTr

[
iαρ3πb

(
(∂ρL

†) + (∂ρL
†T b)(T c)

)
+ iαρ3∂ρπ

b(LT b)(T c)
]

+ STr

(
iα∂2µπ

b 1

r4
(LT b)(T c)

)
− STr

(
iα∂ρπ

bρ3(∂ρL
†)T cT b

)
+ h.c.,

(C.8)

and from the gauge fields

∂NSTr
[
O
(
−iAbL,N (T bL)(T c) + iAbR,N (LT b)(T c)

)]
− STr

[
O
(
−iAL,Mb(∂ML

†)(T bT c) + iAbR,M

)
(∂ML

†)(T cT b)
]

+ h.c.

= − iSTr

[
ρ3

r4

(
∂2µϕ

b
V [T b, L](T c) + ∂2µϕ

b
A{T b, L}(T c)

)]
+ h.c..

(C.9)

Combining all the contributions, together with the scalar potential

STr[∆m2|X|2] = STr[∆m2{L+ σ, L+ σ}] (C.10)

we get the scalar eom

∂ρ(ρ
3∂ρσ

c) +
1

2
ρ3∂2Mσ

bTr

[
1

r4
{T b, T c}

]
− STr

(
∆m2(T b)(T c)

)
σc − ρσbSTr

(
L
∂∆m2

∂L
|L(T b)(T c)

)
+ ∂ρSTr

[
iαρ3πb

(
(∂ρL

†)T cT b + (∂ρL
†T b)(T c)

)
+ iαρ3∂ρπ

b(LT b)(T c)
]

+ STr

(
iα∂2µπ

b 1

r4
(LT b)(T c)

)
− STr

(
iα∂ρπ

bρ3(∂ρL
†)T cT b

)
iSTr

[
ρ3

r4

(
∂2µϕ

b
V [T b, L](T c) + ∂2µϕ

b
A{T b, L}(T c)

)]
+ h.c. = 0.

(C.11)

As shown above, using a general parametrization leads to complicated also mixed equations of

motion, which is numerically intensive to compute.

In the new parametrization, we have Lπ → {L, π}. This will kill for example the ∂µπ
b, when

L† = L

STr
(
i{LT b, T c} + h.c.

)
→ STr

(
i{LT b, T c} − i{T bL, T c} + i{T bL, T c} − i{LT b, T c}

)
= 0.

(C.12)
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Appendix D

Equations of Motion, Nf = 2 Split

Masses

We use r2i = r2i (ρ) = L2
i (ρ) + ρ2 (i = d, u) in the following. In calculating the masses, we took

the limit of vanishing longitudinal ϕvi and ϕai .

Scalars

ξu,d : ∂ρ
(
ρ3∂ρξu/d(ρ)

)
+ ρ

(
−∆m2

u/d − Lu/d(ρ)∆m2′
u/d +

ρ2M2
ξu/d

r4u/d

)
ξu/d(ρ) = 0 (D.1)

ξ1/2 : ∂ρ
(
ρ3∂ρξ1/2(ρ)

)
+
ρ

2

[
−∆m2

u − ∆m2
d − Lu(ρ)∆m2′

u − Ld(ρ)∆m2′
d

]
ξ1/2(ρ)

+
1

2
M2
ξ1/2

ρ3
(

1

r4d
+

1

r4u

)(
ξ1/2(ρ) ± (Lu(ρ) − Ld(ρ))ϕV2/1(ρ)

)
= 0 (D.2)

Pseudo-Scalars

πu,d : ∂ρ

(
L2
u/d(ρ)ρ3∂ρπu/d(ρ)

)
+
L2
u/d(ρ)M2

πu/d
ρ3

r4u/d

(
πu/d(ρ) − ϕAu/d

(ρ)
)

= 0 (D.3)

π1/2 : ∂ρ
(
(Lu(ρ) + Ld(ρ))2ρ3∂ρπ1/2(ρ)

)
+
M2
π1/2

ρ3

2

(
1

r4u
+

1

r4d

)
(Lu(ρ) + Ld(ρ))2

×
(
π1/2(ρ) − ϕA1/2

(ρ)
)

= 0 (D.4)
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Vectors

Vu,d : ∂ρ
(
ρ3∂ρVu/d(ρ)

)
+
ρ3M2

Vu/d

r4u/d
Vu/d(ρ) = 0 (D.5)

V1/2 : ∂ρ
(
ρ3∂ρV1/2(ρ)

)
+
ρ3

8

(
1

r4u
+

1

r4d

)[
4M2

V1/2
− g25 (Lu(ρ) − Ld(ρ))2

]
V1/2(ρ) = 0 (D.6)

ϕv1/2 : ∂ρ

(
ρ3∂ρϕV1/2(ρ)

)
± ρ3g25

8

(
1

r4u
+

1

r4d

)
(Lu(ρ) − Ld(ρ))

×
(
ξ2/1(ρ) ∓ (Lu(ρ) − Ld(ρ))ϕV1/2(ρ)

)
= 0

(D.7)

4M2
ϕV1/2

∂ρϕV1/2(ρ) ∓ g25(Lu(ρ) − Ld(ρ))∂ρξ2/1(ρ) ± g25ξ2/1(ρ)∂ρ(Lu(ρ) − Ld(ρ)) = 0

(D.8)

Axial-Vectors

Au,d : ∂ρ
(
ρ3∂ρAu/d(ρ)

)
+

ρ3

r4u/d

(
M2
Au/d

− g25Lu/d(ρ)2
)
Au/d(ρ) = 0 (D.9)

ϕAu/d
: ∂ρ

(
ρ3∂ρϕAu/d

(ρ)
)

+
ρ3g25
r4u/d

Lu/d(ρ)2(πu/d(ρ) − ϕAu/d
(ρ)) = 0 (D.10)

M2
ϕAu/d

∂ρϕAu/d
(ρ) − g25Lu/d(ρ)2∂ρπu/d(ρ) = 0 (D.11)

A1/2 : ∂ρ
(
ρ3∂ρA1/2(ρ)

)
+
ρ3

8

(
1

r4u
+

1

r4d

)[
4M2

A1/2
− g25 (Lu(ρ) + Ld(ρ))2

]
A1/2(ρ) = 0

(D.12)

ϕA1/2
: ∂ρ

(
ρ3∂ρϕA1/2

(ρ)
)

+
ρ3g25

8

(
1

r4u
+

1

r4d

)
(Lu(ρ) + Ld(ρ))2(π1/2(ρ) − ϕA1/2

(ρ)) = 0

(D.13)

M2
ϕAu/d

∂ρϕA1/2
(ρ) − g25

4
(Lu(ρ) + Ld(ρ))2∂ρπ1/2(ρ) = 0

(D.14)

From eq. (D.10) and eq. (D.13) one recovers eq. (D.4).
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Appendix E

Equations of Motion, Nf = 3

As mentioned in section 4.4, the equations of motion are sorted in groups (u, 1, 2, 3), (4, 5, 6, 7)

and s. The groups (u, 1, 2, 3) and s take the abelian form, but with (Lu, ru) and (Ls, rs) for

(u, 1, 2, 3) and s respectively. The group (4, 5, 6, 7) have mixed equations as the off-diagonal

ones (1,2) in the two-flavor case, where (4,5) and (6,7) mixed in the same way as Nf = 2 (1,2).

We demonstrate this pattern with the scalars as an example.

The scalar fluctuations are[
∂ρ
(
ρ3∂ρ

)
− ∆m2

u(ρ)ρ− Lu(ρ)
∂∆m2

u(ρ)

∂Lu
ρ+ ρ3

M2
σi

r2u

]
σi(ρ) = 0, i = u, 1, ..., 3 (E.1)

[
∂ρ
(
ρ3∂ρ

)
− ∆m2

s(ρ)ρ− Ls(ρ)
∂∆m2

s(ρ)

∂Ls
ρ+ ρ3

M2
σi

r2s

]
σi(ρ) = 0, i = s (E.2)

where σu and σs are defined in eq. (4.4.1). To get the equations for off-diagonal ones (4,5,6,7),

one can simply take eq. (D.2) and change the pairs

(1, 2) → (4, 5), (6, 7)

(Lu, Ld) → (Lu, Ls).
(E.3)

The other fluctuations’ equations follow the same logic.
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Appendix F

Relating ∆m2 and A

In this appendix, we show how ∆m2 is related to the function A in chapter 5 first for a simple

degenerated case and then for a mass splitting/NJL case.

F.1 Degenerate Flavors

The vacuum Lagrangian is

L = 4ρ3(∂ρL
†)(∂ρL) + ρA

[
Tr
(
ρ214 + L†L

)]
TrL†L, (F.1.1)

here we have omitted other terms for simplicity. This will not change the conclusion. L is the

vacuum matrix. A is a function of Tr
(
ρ214 + L†L

)
. Expanding in the fluctuations, substitute

L with X we have

L = 4ρ3(∂ρ(L0 + δL0))
2 + ρ

(
A
∣∣∣
L0

+
∂A

∂L0

∣∣∣
L0

δL0 +
1

2

∂2A

∂L2
0

∣∣∣
L0

δL2
0

)
TrX†X, (F.1.2)

where

A = A
[
Tr
(
ρ214 + L†L

)]
= A

[
4ρ2 + 4 (L0 + σ)2 + 4

∑
i

f2i

]
, (F.1.3)

fi are other fluctuation (fields). The eom of σ = δL is then

∂ρ
(
ρ3∂ρL0

)
− ρA

∣∣∣
L0

− ρ

2

∂A

∂L

∣∣∣
L0

L2
0 + ∂ρ

(
ρ3∂ρδL

)
− ρA

∣∣∣
L0

δL− 2ρ
∂A

∂L

∣∣∣
L0

L0δL

−ρ
2

∂2A

∂L2

∣∣∣
L0

L2
0δL = 0.

(F.1.4)
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Define

A
∣∣∣
L0

+
1

2

∂A

∂L

∣∣∣
L0

L0 ≡ ∆m2

[
log

√
ρ2 +

1

4
TrL†L

]
(F.1.5)

we get the vacuum eom as in eq. (5.3.2). Expand the relation eq. (F.1.5) further to first order

in δL

LHS = A
∣∣∣
L0

+
∂A

∂L

∣∣∣
L0

δL+
1

2

(
∂A

∂L

∣∣∣
L0

+
∂2A

∂L2

∣∣∣
L0

δL

)
(L0 + δL)

= A
∣∣∣
L0

+
1

2

∂A

∂L

∣∣∣
L0

+

(
3

2

∂A

∂L

∣∣∣
L0

+
1

2
L0
∂2A

∂L2

∣∣∣
L0

)
δL

RHS
= ∆m2

∣∣∣
L0

+
∂∆m2

∂L

∣∣∣
L0

δL,

(F.1.6)

this leads to
3

2

∂A

∂L

∣∣∣
L0

+
1

2
L0
∂2A

∂L2

∣∣∣
L0

=
∂∆m2

∂L

∣∣∣
L0

. (F.1.7)

Using the above relations, we get the eoms as in section section 5.3.

F.2 Split Masses

The Lagrangian is

L = Tr
[
ρ3(∂ρL)†∂ρL+ ρAL†L

]
= 2

(
ρ3(∂ρL1)

2 + ρ3(∂ρL6)
2 + ρAL2

1 + ρAL2
6

)
.

(F.2.1)

Expanding in the fluctuations

1

2
L = ρ3 (∂ρ(L1 + δL1))

2 + (∂ρ(L6 + δL6))
2

+ ρ

(
A
∣∣∣
L0

+
∂A

∂L1

∣∣∣
L0

δL1 +
∂A

∂L6

∣∣∣
L0

δL6 +
1

2

∂2A

∂L2
1

∣∣∣
L0

δL2
1 +

1

2

∂2A

∂L2
6

∣∣∣
L0

δL2
6 +

∂2A

∂L1∂L6

∣∣∣
L0

δL1δL6

)
×
[
(L1 + δL1)

2 + (L6 + δL6)
2
]
,

(F.2.2)

where
∣∣∣
L0

means evaluate the function at the vacuum. The equation of motion of δL1 is

∂ρ
(
ρ3∂ρL1

)
− ρA

∣∣∣
L0

L1 −
ρ

2

(
L2
1 + L2

6

) ∂A
∂L1

∣∣∣
L0

+∂ρ
(
ρ3∂ρδL1

)
− ρ

[
A
∣∣∣
L0

+ 2
∂A

∂L1

∣∣∣
L0

L1 +
1

2

∂2A

∂L2
1

∣∣∣
L0

(
L2
1 + L2

6

)]
δL1

−ρ
[
∂A

∂L6

∣∣∣
L0

L1 + 2
∂A

∂L1

∣∣∣
L0

L6 +
1

2

∂2A

∂L1∂L6

∣∣∣
L0

(
L2
1 + L2

6

)]
δL6 = 0.

(F.2.3)
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The equation of motion for δL6 is similar, one just needs to exchange 1 with 6. From the two

equations of motion, we define

A
∣∣∣
L0

L1 +
1

2

(
L2
1 + L2

6

) ∂A
∂L1

∣∣∣
L0

≡ ∆m2

[
log

√
1

4
Tr (ρ2 + L†L)

]
L1,

A
∣∣∣
L0

L6 +
1

2

(
L2
1 + L2

6

) ∂A
∂L6

∣∣∣
L0

≡ ∆m2

[
log

√
1

4
Tr (ρ2 + L†L)

]
L6.

(F.2.4)

Multiply both equations by L1 and L6, respectively, and adding them together, this is nothing

but

A
∣∣∣
L0

+ 2
(
L2
1 + L2

6

) dA

dArg

∣∣∣
L0

≡ ∆m2

[
log

√
1

4
Tr (ρ2 + L†L)

]
, (F.2.5)

where Arg = Tr(ρ214 +X†X), dA
dArg ≡ A′, and

1

4
Tr(ρ214 + L†L) = ρ2 +

1

2
(L2

1 + L2
6) ≡ r2arg,16. (F.2.6)

Expanding the above equation in fluctuations to first order

A
∣∣∣
L0

+
∂A

∂L1

∣∣∣
L0

δL1 +
∂A

∂L6

∣∣∣
L0

δL6 + 2
[
(L1 + δL1)

2 + (L6 + δL6)
2
](

A′
∣∣∣
L0

+
∂A′

∂L1

∣∣∣
L0

δL1 +
∂A′

∂L6

∣∣∣
L0

δL6

)
=A
∣∣∣
L0

+ 2(L2
1 + L2

6)A
′
∣∣∣
L0

→ ∆m2
∣∣∣
L0

+

(
∂A

∂L1

∣∣∣
L0

+ 4L1A
′
∣∣∣
L0

+ 2
(
L2
1 + L2

6

) ∂A′

∂L1

∣∣∣
L0

)
δL1 →

∂∆m2

∂L1
δL1

+

(
∂A

∂L6

∣∣∣
L0

+ 4L6A
′
∣∣∣
L0

+ 2
(
L2
1 + L2

6

) ∂A′

∂L6

∣∣∣
L0

)
δL6 →

∂∆m2

∂L6
δL6.

(F.2.7)

Notice that

∂∆m2

∂L1
=

1

2

L1

ρ2 + 1
2(L2

1 + L2
6)

d∆m2

d(log rarg,16)
≡ 1

2

L1

ρ2 + 1
2(L2

1 + L2
6)

∆m2′,

∂∆m2

∂L6
=

1

2

L6

ρ2 + 1
2(L2

1 + L2
6)

∆m2′,

(F.2.8)

we find

8A′ + 8
(
L2
1 + L2

6

)
A′′ =

1

2

1

ρ2 + 1
2

(
L2
1 + L2

6

)∆m2′, A′′ =
d2A

dArg2
. (F.2.9)

Using the above relations, we get the equations of motion as in section 5.4.

The same computation is done for the NJL case. Without repeating the details, we only list

the result here

16
(
A′ +

(
L2
p + L2

m

)
A′′) =

1

ρ2 + 1
2

(
L2
p + L2

m

)∆m2′. (F.2.10)
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One can get this relation from eq. (F.2.9) by substituting L6,1 with Lp,m.
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Appendix G

Equations of Motion, With NJL

In this section we collect the equations of motion when the NJL interactions are incorporated.

The equations of motion for Q1,2,3,5 are

∂ρ
(
ρ3∂ρϕj

)
+
g25ρ

3Q

2

(
1

r4p
+

1

r4m

)
(
√

2Qi −Qϕj) = 0

∂ρ
(
ρ3∂ρQi

)
− ρ∆m2Qi −

16B

ρ
L2
0Qi +

ρ3M2
Qi

2

(
1

r4p
+

1

r4m

)
(Qi −

Q√
2
ϕj) = 0,

(G.1)

where i = 1, 2, 3, 5, j = 4, 5, 6, 9.

Those for πis are

∂ρ
(
ρ3∂ρϕj

)
+
g25ρ

3L0

2

(
1

r4p
+

1

r4m

)
(
√

2πi − L0ϕj) = 0

∂ρ
(
ρ3∂ρπi

)
− ρ∆m2πi −

16B

ρ
Q2πi +

ρ3M2
πi

2

(
1

r4p
+

1

r4m

)
(πi −

L0√
2
ϕj) = 0,

(G.2)

for i = 1, 2, 4, 5, j = 14, 8, 10, 15.

To solve the Qis and πis, we match only Q1,2,3 and π1,2,4 with the NJL coupling g2s in the UV.

This is done using the following boundary conditions

f(ΛUV ) =
(g2s + 1)c

Λ2
UV

, f ′(ΛUV ) = −2Λ−3
UV c, f

′(IR) = 0,

ϕ(ΛUV ) = (0,±
√

2) +
ΛUV b

−2
, ϕ′(ΛUV ) = b, ϕ′(IR) = 0,

(G.3)

where f denotes the fields that match with the NJL coupling in the UV and ϕ denotes the ϕjs,
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which asymptote to 0 in the UV when solving the πs and to ±
√

2 when solving the Qs. ±

corresponding to the case before and after the unitary rotation. c is the vev term, which is a

free input. b and the mass eigenvalues of f are the shooting parameters. As for the fields Q5

and π5, they are not affected by the NJL term, so we use the boundary condition eq. (5.2.16)

to solve them.

If we define S ± π3 = S±, we find two sets of coupled equations

∂ρ
(
ρ3∂ρϕ16+11

)
+
ρ3g25Lp
r4p

(
√

2S+ − Lpϕ16+11) = 0

∂ρ
(
ρ3∂ρS+

)
− ρ∆m2S+ − 16B

ρ
L0QS+ +

ρ3M2

r4p
(S+ − Lp√

2
ϕ16+11) = 0

∂ρ
(
ρ3∂ρϕ16−11

)
+
ρ3g25Lm
r4m

(
√

2S− − Lmϕ16−11) = 0

∂ρ
(
ρ3∂ρS−

)
− ρ∆m2S− +

16B

ρ
L0QS− +

ρ3M2

r4m
(S− − Lm√

2
ϕ16−11) = 0.

(G.4)

The scalars σ and Q4 are mixed, since we only match Q4 with the NJL coupling in the UV, we

work then in the (σ,Q4) basis.

∂ρ
(
ρ3∂ρσ

)
− ρ∆m2σ − ρL2

0

r4njl
∆m2′σ − 16B

ρ
Q2σ +

ρ3M2

2

(
1

r4p
+

1

r4m

)
σ

−32BL0Q

ρ
Q4 −

L0Qρ

r2njl
∆m2′Q4 +

ρ3M2

2

(
1

r4p
− 1

r4m

)
Q4 = 0,

∂ρ
(
ρ3∂ρQ4

)
− ρ∆m2Q4 −

ρQ2

r4njl
∆m2′Q4 −

16B

ρ
L2
0Q4 +

ρ3M2

2

(
1

r4p
+

1

r4m

)
Q4

−32BL0Q

ρ
σ − L0Qρ

r2njl
∆m2′σ +

ρ3M2

2

(
1

r4p
− 1

r4m

)
σ = 0.

(G.5)

The gauge bosons are

∂ρ
(
ρ3∂ρAi

)
+
ρ3M2

Ai

r4m
Ai = 0, i = (1 + 13, 2 + 7, 3 + 12)

∂ρ
(
ρ3∂ρAi

)
+
ρ3M2

Ai

r4p
Ai = 0, i = (1 − 13, 2 − 7, 3 − 12)

∂ρ
(
ρ3∂ρAi

)
+
ρ3

r4p

[
M2
Ai

− L2
pg

2
5

]
Ai = 0, i = 11 + 16;

∂ρ
(
ρ3∂ρAi

)
+
ρ3

r5m

[
M2
Ai

− L2
mg

2
5

]
Ai = 0, i = 16 − 11;

∂ρ
(
ρ3∂ρAi

)
+
ρ3

2

(
1

r4p
+

1

r4m

)[
M2
Ai

− (Lp ± Lm)2

4
g25

]
Ai = 0,

i = (4, 5, 6, 9)(+), i = (8, 10, 14, 15)(−).

(G.6)
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All these fields are solved by shooting from the IR, using the boundary conditions eq. (5.2.15)

and eq. (5.2.16) for the decoupled and coupled equations respectively.
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