1. Problemset "Theoretical Particle Physics"
 April 24, 2017

Pauli Matrices \&c.

Since we will have to deal a lot with small matrices, it's a good idea to review some useful formulae for concrete calculations. Particularly important are the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

which form a basis for the traceless and hermitian 2×2-matrices and satisfy

$$
\begin{equation*}
\sigma_{i} \sigma_{j}=\delta_{i j} \mathbf{1}+\mathrm{i} \sum_{k=1}^{3} \epsilon_{i j k} \sigma_{k} \tag{2}
\end{equation*}
$$

1.1 Exponentials

Use the Pauli matrices to parametrize a general complex 2×2-matrix M by four complex numbers (a_{0}, \vec{a})

$$
M\left(a_{0}, \vec{a}\right)=a_{0} \mathbf{1}+\vec{a} \vec{\sigma}=a_{0} \mathbf{1}+a_{1} \sigma_{1}+a_{2} \sigma_{2}+a_{3} \sigma_{3}=\left(\begin{array}{cc}
a_{0}+a_{3} & a_{1}-\mathrm{i} a_{2} \tag{3}\\
a_{1}+\mathrm{i} a_{2} & a_{0}-a_{3}
\end{array}\right)
$$

and show that

$$
\begin{equation*}
\exp \left(\mathrm{i} M\left(a_{0}, \vec{a}\right)\right)=\mathrm{e}^{\mathrm{i} a_{0}} M\left(\cos a, \mathrm{i} \frac{\sin a}{a} \vec{a}\right) \quad \text { with } \quad a=\sqrt{\vec{a}^{2}} \tag{4}
\end{equation*}
$$

1.2 Complex Conjugate Representation

Consider the matrices

$$
\begin{equation*}
\tilde{\sigma}_{i}=-\sigma_{2} \sigma_{i}^{*} \sigma_{2} \quad(\text { for } i=1,2,3) \tag{5}
\end{equation*}
$$

where $\cdot *$ denotes elementwise complex conjugation and not hermitian conjugation.
Compute their commutation relations

$$
\begin{equation*}
\left[\tilde{\sigma}_{i}, \tilde{\sigma}_{j}\right] \tag{6}
\end{equation*}
$$

1.3 Hausdorff's Formula

Prove Hausdorff's formula

$$
\begin{equation*}
\mathrm{e}^{A} B \mathrm{e}^{-A}=\mathrm{e}^{\operatorname{ad}_{A}} B \tag{7}
\end{equation*}
$$

with the adjunction operator ad_{A}

$$
\begin{equation*}
\operatorname{ad}_{A} B=[A, B] \tag{8}
\end{equation*}
$$

for arbitrary operators and matrices.
Hint: replace $A \rightarrow t A$ (with $t \in \mathbf{R}$) on both sides and show, that both sides of the equation solve the same initial value problem.

