4. Problemset "Quantum Algebra \& Dynamics"
 November 6, 2015

More Functions / Subalgebras

4.1 Square Root and Exponential

Use again the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

to parametrize a general complex 2×2-matrix $M \in \mathcal{M}_{2}$ by four complex numbers (a_{0}, \vec{a})

$$
\begin{equation*}
M\left(a_{0}, \vec{a}\right)=a_{0} \mathbf{1}+\vec{a} \vec{\sigma} . \tag{2}
\end{equation*}
$$

1. Use the holomorphic functional calculus to compute \sqrt{M}.
2. Use the holomorphic functional calculus to compute $\mathrm{e}^{\mathrm{i} M}$ and compare the result with the corresponding power series.

4.2 Square Root Revisited

Show $B^{2}=A \geq 0$ for

$$
\begin{equation*}
B=\int_{0}^{\infty} \frac{\mathrm{d} x}{\pi} \frac{A}{\sqrt{\lambda}} \frac{1}{\lambda \mathbf{1}+A} . \tag{3}
\end{equation*}
$$

by explicit calculation without using the holomorphic functional calculus.

4.3 Subalgebras

Consider a C^{*}-algebra \mathcal{A}, an element $P=P^{*} \in \mathcal{A}$ with

$$
\begin{equation*}
P^{2}=P \tag{4}
\end{equation*}
$$

Show that the subset

$$
\begin{equation*}
\mathcal{A}^{\prime}=P \mathcal{A} P=\{P A P: A \in \mathcal{A}\} \subseteq \mathcal{A} \tag{5}
\end{equation*}
$$

is a C^{*}-algebra with identity $\mathbf{1}_{\mathcal{A}^{\prime}}=P$.

