Vector-Boson Scattering - current status and future prospects

RTG 2994 Inauguration Workshop Würzburg

Philip Sommer

Technische Universität Dresden

17.-18.03.2025

Introduction	Measurements	Interpretation	Polarisation	Summary
•0000	0000000000	0000	0000000	O
The Standard Model				

- The Standard Model (SM) describes the fundamental constituents of matter and their interactions
 - strong and electroweak (EW) interaction
- Rich variety of interactions from a rather simple set of symmetries
- Self-interactions of electroweak gauge bosons
 - Quantum corrections at EW mass scale (probed in W/Z precision measurements)
 - Large effects at highest energies
- At the LHC we can test the electroweak theory at highest energies

Electroweak Theory

- Gauge couplings arise from the SU(2) potential term $\mathcal{L} = -\frac{1}{4}W^a_{\mu\nu}W^{\mu\nu}_a$, with field strength tensor $W^a_{\mu\nu} = \partial_\mu W^a_\nu \partial_\nu W^a_\mu gf_{abc}W^b_\mu W^c_\nu$
- It generates cubic and quartic couplings

$$\mathcal{L}_{3} = i e_{V=\gamma,Z} \left[W_{\mu\nu}^{+} W^{-\mu} V^{\nu} - W_{\mu\nu}^{-} W^{+\mu} V^{\nu} + W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} \right]$$

$$\mathcal{L}_{4} = \frac{e_{W}^{2}}{e_{V=\gamma,Z}^{2}} \left[W_{\mu}^{-} W^{+\mu} W_{\nu}^{-} W^{+\nu} - W_{\mu}^{-} W^{-\mu} W_{\nu}^{+} W^{+\nu} \right]$$

$$+ \frac{e_{V=\gamma,Z}^{2}}{e_{V} e_{Z}} \left[2 W_{\mu}^{-} W^{+\mu} Z_{\nu} A^{\nu} - W_{\mu}^{-} Z^{\mu} W_{\nu}^{+} A^{\nu} - W_{\mu}^{-} A^{\mu} W_{\nu}^{+} Z^{\nu} \right]$$

With precise predictions of the coupling strength:

$$e_{\gamma} = g \sin \theta_W, e_W = rac{e_{\gamma}}{2\sqrt{2} \sin \theta_W} ext{ and } e_Z = e_{\gamma} \cot \theta_W$$

- They always involve a pair of W bosons (there are no neutral vertices)
- Gauge interactions to Higgs boson

$$\mathcal{L}_{\text{Higgs}} = \frac{m_{W}^{2}}{v^{2}} W_{\mu}^{+} W^{-\mu} h^{2} + \frac{m_{Z}^{2}}{v^{2}} Z_{\mu} Z^{\mu} h^{2}$$

Introduction	Measurements	Interpretation	Polarisation	Summary
OO●OO	0000000000	0000	0000000	O

Electroweak Gauge Structure

- Gauge-boson self interactions play a crucial role for the renormalisability of the electroweak theory
- Large cancellations of divergences arising in individual diagrams are exact if couplings take the values of the SM
- ⇒ Diboson measurements are a sensitive probe of the inner structure of the electroweak symmetry

- In processes involving quartic couplings, the Higgs boson is governing the high-energy behaviour (if only massive gauge bosons participate in the scattering)
- Such processes became experimentally accessible for the first time in the LHC run-2

Experimental access to quartic electroweak interactions in triboson production and vector-boson scattering (VBS)

Vector-boson Fusion and Vector-boson Scattering

Quartic electroweak (EW) coupling experimentally accessible in EW production of VVjj

Purely electroweak interactions involving only cubic and quartic self interactions •

Purely electroweak interactions without self interactions ●

Processes involving both strong and electroweak interactions ●

- not gauge-invariantly separable \rightarrow measure EW production
- •+• interference & not separable at all orders \rightarrow provide measurement of sum

Experimental Signature

No colour connection between scattering guarks leads to characteristic signature

Additional activity measured relative to centre of "tagging jets", e.g.:

$$\zeta_{X} = \left| \frac{y_{X} - (y_{j1} + y_{j2})/2}{y_{j1} - y_{j2}} \right|, \qquad C_{X} = \exp\left[-4 \left(\frac{\eta_{X} - (\eta_{j1} + \eta_{j2})/2}{\eta_{j1} - \eta_{j2}} \right)^{2} \right]$$

• Critical for a good measurements of $W_{\gamma jj}$ -electroweak is a precise

Estimation of strong $W\gamma j j$ production relies on $\ell\gamma$ centrality and central jet activity

Introduction	Measurements	Interpretation	Polarisation	Summary
00000	000●000000	0000	0000000	O
Electroweak Wvii Pr	oduction			

- Technique to estimate strong Wγjj background introduces large statistical uncertainties
- To maximise sensitivity, measurements use:
 - fits exploring characteristic VBS variables
 - e.g. in combination with neural-networks
- \rightarrow introducing modelling assumptions
- Control of strong production remains critical

Electroweak $W\gamma jj$ production observed with $\gg 5\sigma$, measured to be:

$$\sigma_{\rm EW,\,meas.} = 13.2 \pm 2.5~{\rm fb}$$

with large uncertainties in strong *and* electroweak theoretical modelling

Compared to theoretical predictions:

$$\begin{split} \sigma_{\rm EW,\,theo.} &= 8.9^{+1.0}_{-0.7} \text{ fb (Sherpa 2.2.12, LO@0,1j)} \\ \sigma_{\rm EW,\,theo.} &= 13.0^{+0.9}_{-0.8} \text{ fb (Madgraph+Pythia8, LO)} \end{split}$$

Uncertainty Source	Fractional Uncertainty [%]
Statistics	11
Jets	8
Lepton, photon, pile-up	8
EW $W\gamma j j$ modelling	7
Strong $W\gamma j j$ modelling	6
Non-prompt background	2
Luminosity	2
Other Background modelling	2
$E_{\rm T}^{\rm miss}$	1

Full set of results in EPJC 84 (2024) 1064

In the W[±]W[±]jj final state, strong and electroweak diagrams without self-interactions are suppressed

(almost) all background contributions are instrumental

- Theoretically understood well, at NLO EW&QCD (HEP 1710 (2017) 124, PRL 118, 261801 (2017))
- \Rightarrow the $W^{\pm}W^{\pm}jj$ final state is often referred to as the *golden channel*

- ► Simultaneous measurement of *W*[±]*W*[±]*jj* and *WZjj* production (in CMS)
- ▶ Fit of m_{jj} and m_{ℓℓ} distributions (W[±]W[±]jj) and BDT discriminant (WZjj)
- W[±]W[±]jj with smaller uncertainties in almost all individual sources (background from misid. leptons smaller in ATLAS)

Source of uncertainty	W [±] W [±] (%)	WZ (%)
Integrated luminosity	1.5	1.6
Lepton measurement	1.8	2.9
Jet energy scale and resolution	1.5	4.3
Pileup	0.1	0.4
btagging	1.0	1.0
Nonprompt rate	3.5	1.4
Trigger	1.1	1.1
Limited sample size	2.6	3.7
Theory	1.9	3.8
Total systematic uncertainty	5.7	7.9
Statistical uncertainty	8.9	22
Total uncertainty	11	23

Introduction	Measurements	Interpretation	Polarisation	Summary
00000	0000000000	0000	0000000	O

Electroweak *W*[±]*W*[±]*jj* and *WZjj* Results

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction without NLO corrections (fb)	Theoretical prediction with NLO corrections (fb)
$EW \; W^\pm W^\pm$	3.98 ± 0.45 $0.37 (stat) \pm 0.25 (syst)$	3.93 ± 0.57	3.31 ± 0.47
EW+QCD W [±] W [±]	4.42 ± 0.47 $0.39 (\text{stat}) \pm 0.25 (\text{syst})$	4.34 ± 0.69	3.72 ± 0.59
EW WZ	1.81 ± 0.41 $0.39 ({\rm stat}) \pm 0.14 ({\rm syst})$	1.41 ± 0.21	1.24 ± 0.18
EW+QCD WZ	4.97 ± 0.46 $0.40 (stat) \pm 0.23 (syst)$	4.54 ± 0.90	4.36 ± 0.88
QCD WZ	3.15 ± 0.49 $0.45 (stat) \pm 0.18 (syst)$	3.12 ± 0.70	3.12 ± 0.70

Results in agreement with theoretical predictions at LO and NLO

Electroweak $W^{\pm}W^{\pm}jj$ Results

- Both experiments provide differential W[±]W[±]jj measurements in a wide range of variables
- Full details in JHEP 04 (2024) 026 (ATLAS) and PLB 809 (2020) 135710 (CMS)

$$\mu_{ ext{EW}} = 0.85^{+0.23}_{-0.21}$$

- However, semi-leptonic decays provide leading constraints on non-SM quartic gauge couplings
- Full measurement in PLB 834 (2022) 137438
- Previous results on 2015+2016 data:
- ATLAS PRD 100 (2019) 032007 (0 ℓ , 1 ℓ and 2 ℓ final states)
 - CMS PLB 798 (2019) 134985 (1 ℓ and 2 ℓ final states, w/ EFT limits)
- And you should watch this link during this week

Introduction	Measurements	Interpretation	Polarisation	Summary
00000	00000000●	0000	0000000	O

Experimental Status

Aug 2023		CMS Prelimina	ary		
CMS EW measurements vs. Theory	7 TeV CMS measurement (stat,s 8 TeV CMS measurement (stat,s	stat+sys) ++++++++++++++++++++++++++++++++++			
qqW → → → → → → → → → → → → → → → → → →	$\begin{array}{c} 0.84\pm0.08\\ 0.91\pm0.02\\ 0.93\pm0.14\\ 0.84\pm0.07\\ 0.98\pm0.04\\ 0.85\pm0.12\\ 0.85$	$\begin{array}{c} \underset{\pm}{\overset{(\text{startsys})}{\pm}}, & \underset{\pm}{(\text$			
qqWγ → H qqWγ → H os WW → H	• 1.74 ± 0.00	± 0.74 19.7 fb ⁻¹ ATL 139 fb ⁻¹ , $\gg 5\sigma$	AS EPJC 81 (2021) 163	CM 36 fb ⁻¹ , $\gg 5\sigma$ 36 fb ⁻¹ $\gg 5\sigma$	S EPJC 78 (2018) 589 EPJC 80 (2020) 43
ss WW	VBS W [±] W [±] VBS W [±] Z VBS ZZ VBS VY	140 fb ⁻¹ , $\gg 5\sigma$ 140 fb ⁻¹ , $\gg 5\sigma$ 139 fb ⁻¹ , 5.5σ 140 fb ⁻¹ , $\gg 5\sigma$	JHEP 04 (2024) 026 JHEP 06 (2024) 192 NPHYS 19 (2023) 237 EPJC 84 (2024) 1064	$\begin{array}{c} 137 \text{ fb}^{-1}, \gg 5\sigma \\ 137 \text{ fb}^{-1}, 6.8\sigma \\ 137 \text{ fb}^{-1}, 4.0\sigma \\ (137+20) \text{ fb}^{-1}, 5.3\sigma \end{array}$	PLB 809 (2020) 135710 PLB 809 (2020) 135710 PLB 809 (2020) 135710 PLB 812 (2020) 135992 PLB 811 (2020) 135988
qqZZ All results at:	VBS Zγ 2 VBS W ⁺ W ⁻	140 fb ⁻¹ , $\gg 5\sigma_{(Z \to t\ell)}$ 140 fb ⁻¹ , 6.3 $\sigma_{(Z \to vr)}$ 140 fb ⁻¹ , 7.1 σ	PLB 846 (2023) 138222 JHEP 06 (2023) 082 JHEP 07 (2024) 254	137 fb ⁻¹ , 9.4 σ 137 fb ⁻¹ , 5.6 σ	PRD 104 (2021) 072001 PLB 841 (2023) 137495
http://cern.ch/go/pNj7 CrOSS-SECTION Ratio:	$\sigma_{\text{exp.}}/\sigma_{\text{theo.}} = \gamma \gamma \rightarrow W^+ W^-$ VBS VV	139 fb ⁻¹ , 8.4 σ 36 fb ⁻¹ , 2.7 σ	PLB 816 (2021) 136190 PRD 100 (2019) 032007	100 fb ⁻¹ , - 137 fb ⁻¹ , 4.4 σ	JHEP 07 (2023) 229 PLB 834 (2022) 137438

- Electroweak VVjj production has been observed in all major channels in the LHC run-2
- They are amongst the rarest processes experimentally accessible at the LHC

Introduction	Measurements	Interpretation	Polarisation	Summary
00000	000000000	●○○○	0000000	O

Interpretation of Measurements

from PRD 93 093013 (2016)

- There are no dim-6 operators that affect only the quartic electroweak couplings
- In VBS and triboson processes we study dim-8 operators only affecting quartic EW couplings (assuming the dim-6 coefficients are 0, and other dim-8 operators are constrained elsewhere)
- For interplay with HEFT, see this talk

Limits on aQGCs from VBS

- Sensitivity to EFT effects in high-energy tails, but growth of amplitude with \sqrt{s} can violate unitarity
- ▶ Partial-wave unitarity for $W \rightarrow W$ scattering calculated in PRD 101, 113003
- Experimentally, provide limits with EFT contribution restricted as a function of $m_W < E_c$
- First unitarised limits on S-family operators from WZjj production, JHEP 06 (2024) 192

To constrain the full set of non-SM quartic gauge couplings, important to explore a variety of VBS channels

- e.g. leading experimental constraints on T_8 , T_9 (and a few others) from $Z(\rightarrow \nu\nu)\gamma jj$ production
- Limits on M-family dominated by Wγjj production
- Sensitivity to S-family operators from WWjj, WZjj, ZZjj channels

20/28

Further reading: PLB 860 (2025) 139137, EPJC 81 (2021) 723

Introduction	Measurements	Interpretation	Polarisation	Summary
00000	0000000000	0000	●000000	O

Polarisation Measurements

Figure 21.3. The Goldstone boson equivalence theorem. At high energy, the amplitude for emission or absorption of a longitudinally polarized massive gauge boson becomes equal to the amplitude for emission or absorption of the Goldstone boson that was eaten by the gauge boson.

Peskin, Schroeder; An Introduction to QFT

- Divergencies in individual VBS diagrams are associated with longitudinally polarised W[±] and Z bosons
- Longitudinal polarisation states arise from electroweak symmetry breaking via the BEH mechanism
- ⇒ Polarisation measurements are a direct probe of electroweak symmetry breaking

Introduction	Measurements	Interpretation	Polarisation	Summary
00000	000000000	0000		O
		_		

Gauge-Boson Polarisation in $pp \rightarrow W^{\pm}Z$

- Polarisation fractions measured in fit to DNN exploiting kinematic and angular variables
- In four categories:

 $\left| \cos \theta_{\ell^W}^* \right| \le 0.5$ $\left| \cos \theta_{\ell^Z}^* \right| \le 0.5$

	f_{00}	$f_{0\mathrm{T}}$	$f_{\rm T0}$	$f_{\rm TT}$		
Relative uncertainty [%]						
e energy scale and id. efficiency μ energy scale and id. efficiency $E_{\rm T}^{\rm miss}$ and jets Pile-up Misidentified lepton background ZZ background Other backgrounds	$\begin{array}{c} 0.34 \\ 0.8 \\ 3.3 \\ 0.6 \\ 2.3 \\ 0.9 \\ 3.0 \end{array}$	$\begin{array}{c} 0.6 \\ 0.23 \\ 1.3 \\ 0.17 \\ 1.6 \\ 0.17 \\ 1.6 \end{array}$	$\begin{array}{c} 0.8 \\ 0.23 \\ 1.2 \\ 0.4 \\ 0.8 \\ 0.32 \\ 1.3 \end{array}$	$\begin{array}{c} 0.31 \\ 0.13 \\ 0.4 \\ 0.15 \\ 0.26 \\ 0.07 \\ 0.4 \end{array}$		
Parton Distribution Function QCD scale Modelling	$\begin{array}{c} 0.5 \\ 0.19 \\ 9 \end{array}$	1.8 8 4	$\begin{array}{c} 0.09 \\ 0.9 \\ 2.9 \end{array}$	$\begin{array}{c} 0.5 \\ 2.0 \\ 1.2 \end{array}$		
Total systematic uncertainty Luminosity Statistical uncertainty	$14 \\ 0.35 \\ 13$	$ \begin{array}{c} 15 \\ 0.24 \\ 10 \end{array} $		4 0.05 3.0		
Total	19	18	14	5		

- Largest source of uncertainty in f₀₀: polarisation modelling and E_T^{miss} reconstruction
- ▶ $pp \rightarrow W_0^{\pm}Z_0$ production observed with 7.1 σ
- Reported in PLB 843 (2023) 137895

- First study of the energy dependence in two phase-space regions, 100 GeV $< p_{T} < 200$ GeV and $p_{T} > 200$ GeV
- Using individual BDTs of ang. and kin. variables
- Documented in PRL 133 (2024) 101802
- Similar technique used to obtain evidence for $Z_L Z_L$ production JHEP 12 (2023) 107

-	Measurement			Prediction	
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \; {\rm GeV}$
<i>f</i> 00	$0.19 \pm_{0.03}^{0.03} (stat) \pm_{0.02}^{0.02} (syst)$	$0.13 \pm_{0.08}^{0.09} (stat) \pm_{0.02}^{0.02} (syst)$	f00	0.152 ± 0.006	0.234 ± 0.007
f_{0T+T0}	$0.18 \pm 0.07_{0.08} (stat) \pm 0.05_{0.06} (syst)$	$0.23 \pm _{0.18}^{0.17} (stat) \pm _{0.10}^{0.06} (syst)$	f _{0T}	0.120 ± 0.002	0.062 ± 0.002
f _{TT}	$0.63 \pm_{0.05}^{0.05} (stat) \pm_{0.04}^{0.04} (syst)$	$0.64 \pm_{0.12}^{0.12} (stat) \pm_{0.06}^{0.06} (syst)$	f_{T0}	0.109 ± 0.001	0.058 ± 0.001
f_{00} obs (exp) sig.	5.2 (4.3) <i>o</i>	1.6 (2.5) <i>σ</i>	f _{TT}	0.619 ± 0.007	0.646 ± 0.008

Polarisation in Vector-boson Scattering

- Measurement from double differential DNN/BDT distribution
- Evidence for purely electroweak W[±]₀ Wjj production:
 - ATLAS: 3.3σ obs. (4.0σ exp.)
 - CMS: 2.3σ obs. (3.1σ exp.)

Cross sections in agreement with theoretical predictions

ATLAS 0.88 \pm 0.28 (stat) \pm 0.09 (syst) fb 1.18 \pm 0.29 fb (Sherpa LO@0,1j + corrections) CMS 1.20^{+0.56}_{-0.53} fb 1.63 \pm 0.21 fb (Madgraph LO + corrections) (where fiducial phase space differs between both experiments)

Experiments barely sensitive to double-longitudinal polarisation, yet

 $\begin{array}{ccc} \text{ATLAS} & 0.01 \pm 0.20 \mbox{ (stat)} \pm 0.05 \mbox{ (syst) fb} & 0.29 \pm 0.07 \mbox{ fb} \mbox{ (Sherpa LO@0,1j + corrections)} \\ \text{CMS} & 0.32^{+0.42}_{-0.40} \mbox{ fb} & 0.44 \pm 0.05 \mbox{ fb} \mbox{ (Madgraph LO + corrections)} \\ \end{array}$

- Upper limit of 0.45 fb \Rightarrow important constraint on BSM models
- Incorporating polarised (JHEP 11 (2024) 115) or inclusive NLO EW corrections
- More details in PLB 812 (2020) 136018 (CMS) and arXiv:2503.11317 (ATLAS)

Introduction	Measurements	Interpretation	Polarisation	Summary
00000	000000000	0000	0000000	•
Summarv				

- The LHC tests the electroweak theory at highest energies in measurements of multiboson production
- Processes involving quartic electroweak couplings became experimentally accessible in the LHC run-2
- Observation of all major VBS channels
- First measurements of polarisation in diboson and VBS
- ⇒ These are important steps in the study of EW symmetry breaking with the Higgs mechanism

We're well prepared to systematically explore EW couplings in run-3 and beyond

Introduction	Measurements	Interpretation	Polarisation	Summary
00000	000000000	OOOO	0000000	O

Backup

Electroweak Zjj Production

Estimation of strong Zjj production relies on Z centrality and central jet activity

Inclusive EW Zjj cross sections measured to be:

 $\sigma_{\rm EW} = 37.4 \pm 3.5$ (stat) ± 5.5 (syst) fb

- Leading uncertainty in strong Zjj modelling and jet reconstruction
- Only small reduction of stat. unc. compared to result from 3.2 fb⁻¹:

 $\sigma_{\rm EW} = 34.2 \pm 5.8$ (stat) ± 5.5 (syst) fb (relying much more on Zjj modelling)

- Fractional uncertainty 0.4 0.3 0.2 0.2 0.2 0.4 EW Zij→Iljj $N_{into}^{gap} = 0, \xi_{\tau} < 0.5 (EW SR)$ Luminosity Elepton & pile-up ⊕ Jet
 ⊕ Strong Zjj model Unfolding EW Zij model 0.15 0 0.05 10³ 2×103 3×10³ 4×10³ 7×10 m_i [GeV]
- Reducing reliance on theory modelling of strong Zjj production introduces large stat. unc. in control regions 28/28

Strong and Electroweak Zjj Measurements

NLO

 $\mathcal{O}(\alpha^5)$

adapted from JHEP 1710 (2017) 124

 $\mathcal{O}(\alpha_s \alpha^4)$

- electroweak Zjj production processes
 - At higher order, distinction is ambiguous
 - Insensitive to strong and electroweak interference
- Zjj production is standard candle to benchmark theo. calculations relevant for vector-boson scattering
- More information in EPJC 81 (2021) 163

 $O(\alpha_s^3 \alpha^2)$

 $O(\alpha_{*}^{2}\alpha^{3})$

Bonus: Limits from Triboson Production

- Quartic couplings experimentally accessible in triboson production
- Experimentally and theoretically more difficult than VBS
- Recent measurement of VVZ production slightly higher than prediction at NLO (similar as in WWW before)
- My personal impression: EFT limits are valid to higher energies
- ightarrow triboson processes could be a valuable addition to EFT programme

ZZZ

Data

W77

ATLAS