Dr. Andreas Pfenning
Dr. Andreas Pfenning
University of Würzburg
Am Hubland
Plug‐and‐Play Fiber‐Coupled Quantum Dot Single‐Photon Source via Photonic Wire Bonding
M. de Gregorio, S. Yu, D. Witt, B. Lin, M. Mitchell, Ł. Dusanowski, C. Schneider, L. Chrostowski, T. Huber-Loyola, S. Höfling, J. F. Young, and A. Pfenning
Adv. Quantum Technol. 7 (2024), DOI: 10.1002/qute.202300227
Polarized and Unpolarized Emission from a Single Emitter in a Bullseye Resonator
G. Peniakov, Q. Buchinger, M. Helal, S. Betzold, Y. Reum, M. B. Rota, G. Ronco, M. Beccaceci, T. M. Krieger, S. F. C. Da Silva, A. Rastelli, R. Trotta, A. Pfenning, S. Höfling, and T. Huber-Loyola
Laser Photonics Rev. (2024), DOI: 10.1002/lpor.202300835
Ultra-low density and high performance InAs quantum dot single photon emitters
C. Shang, M. de Gregorio, Q. Buchinger, M. Meinecke, P. Gschwandtner, A. Pfenning, T. Huber-Loyola, S. Höfling, and J. E. Bowers
APL Quantum 1 (2024), DOI: 10.1063/5.0209866
Purcell‐Enhanced Single‐Photon Emission in the Telecom C‐Band
J. Kaupp, Y. Reum, F. Kohr, J. Michl, Q. Buchinger, A. Wolf, G. Peniakov, T. Huber-Loyola, A. Pfenning, and S. Höfling
Adv. Quantum Technol. 6 (2023), DOI: 10.1002/qute.202300242
Opto-electronic transport properties of resonant tunneling diodes with type-I and II postwells
S. Krüger, A. Pfenning, F. Jabeen, F. Hartmann, and S. Höfling
Appl. Phys. Lett. 123 (2023), DOI: 10.1063/5.0162282
Strain‐Free GaSb Quantum Dots as Single‐Photon Sources in the Telecom S‐Band
J. Michl, G. Peniakov, A. Pfenning, J. Hilska, A. Chellu, A. Bader, M. Guina, S. Höfling, T. Hakkarainen, and T. Huber-Loyola
Adv. Quantum Technol. 6 (2023), DOI: 10.1002/qute.202300180
Monolithic high contrast grating on GaSb/AlAsSb based epitaxial structures for mid-infrared wavelength applications
A. Schade, A. Bader, T. Huber, S. Kuhn, T. Czyszanowski, A. Pfenning, M. Rygała, T. Smołka, M. Motyka, G. Sęk, F. Hartmann, and S. Höfling
Opt. Express 31, 16025 (2023), DOI: 10.1364/OE.487119
Single-Photon Counting with Semiconductor Resonant Tunneling Devices
A. Pfenning, S. Krüger, F. Jabeen, L. Worschech, F. Hartmann, and S. Höfling
Nanomaterials (Basel) 12 (2022), DOI: 10.3390/nano12142358
Resonant Tunneling Diodes: Mid-Infrared Sensing at Room Temperature
F. Rothmayr, E. D. Guarin Castro, F. Hartmann, G. Knebl, A. Schade, S. Höfling, J. Koeth, A. Pfenning, L. Worschech, and V. Lopez-Richard
Nanomaterials (Basel) 12 (2022), DOI: 10.3390/nano12061024
III-V semiconductor mid-infrared interband cascade light emitters and detectors
A. Bader, L. Steinbrecher, F. Rothmayr, Y. Rawal, F. Hartmann, A. Pfenning, and S. Höfling
Proc. SPIE, Infrared Remote Sensing and Instrumentation XXIX, 13 (2021), DOI: 10.1117/12.2599140
Determination of Carrier Density and Dynamics via Magnetoelectroluminescence Spectroscopy in Resonant-Tunneling Diodes
E. R. Cardozo de Oliveira, A. Naranjo, A. Pfenning, V. Lopez-Richard, G. E. Marques, L. Worschech, F. Hartmann, S. Höfling, and M. D. Teodoro
Phys. Rev. Appl. 15, 14042 (2021), DOI: 10.1103/PhysRevApplied.15.014042
Optical Mapping of Nonequilibrium Charge Carriers
E. D. Guarin Castro, A. Pfenning, F. Hartmann, G. Knebl, M. Daldin Teodoro, G. E. Marques, S. Höfling, G. Bastard, and V. Lopez-Richard
J. Phys. Chem. C 125, 14741 (2021), DOI: 10.1021/acs.jpcc.1c02173
Progress on mid-infrared optoelectronic devices: interband cascade lasers, interband cascade detectors, and resonant tunneling diodes
A. Bader, A. Pfenning, A. Schade, G. Knebl, R. Weih, Y. Rawal, L. Worschech, F. Hartmann, and S. Höfling
Proc. SPIE, Infrared Remote Sensing and Instrumentation XXVIII, 18 (2020), DOI: 10.1117/12.2570729
Photon counting with resonant tunneling diodes: overview and recent developments
A. Pfenning, F. Hartmann, and S. Höfling
Proc. SPIE, Advanced Photon Counting Techniques XIV, 5 (2020), DOI: 10.1117/12.2559290
Resonant tunneling diode photon number resolving single-photon detectors
A. Pfenning, J. Jurkat, A. Naranjo, D. Köck, F. Hartmann, and S. Höfling
Proc. SPIE, Infrared Remote Sensing and Instrumentation XXVII, 10 (2019), DOI: 10.1117/12.2529929
Electroluminescence on-off ratio control of n−i−n GaAs/AlGaAs-based resonant tunneling structures
E. R. Cardozo de Oliveira, A. Pfenning, E. D. Guarin Castro, M. D. Teodoro, E. C. dos Santos, V. Lopez-Richard, G. E. Marques, L. Worschech, F. Hartmann, and S. Höfling
Phys. Rev. B 98, 75302 (2018), DOI: 10.1103/PhysRevB.98.075302
Mid-infrared detectors based on resonant tunneling diodes and interband cascade structures
M. Kamp, F. Hartmann, L. Worschech, S. Höfling, A. Pfenning, G. Knebl, A. Schade, R. Weih, A. Bader, M. Meyer, S. Krüger, F. Rothmayr, C. Kistner, and J. Koeth
Proc. SPIE, Infrared Remote Sensing and Instrumentation XXVI, 30 (2018), DOI: 10.1117/12.2324501
p‐Type Doped AlAsSb/GaSb Resonant Tunneling Diode Photodetector for the Mid‐Infrared Spectral Region
A. Pfenning, F. Hartmann, R. Weih, M. Emmerling, L. Worschech, and S. Höfling
Adv. Opt. Mater. 6, 1800972 (2018), DOI: 10.1002/adom.201800972
Mid-infrared GaSb-based resonant tunneling diode photodetectors for gas sensing applications
F. Rothmayr, A. Pfenning, C. Kistner, J. Koeth, G. Knebl, A. Schade, S. Krueger, L. Worschech, F. Hartmann, and S. Höfling
Appl. Phys. Lett. 112, 161107 (2018), DOI: 10.1063/1.5025531
Antimonide-based resonant tunneling photodetectors for mid infrared wavelength light detection
F. Hartmann, A. Pfenning, G. Knebl, R. Weih, A. Bader, M. Emmerling, M. Kamp, S. Höfling, and L. Worschech
Proc. SPIE, Infrared Remote Sensing and Instrumentation XXV, 5 (2017), DOI: 10.1117/12.2274917
Temperature tuning from direct to inverted bistable electroluminescence in resonant tunneling diodes
F. Hartmann, A. Pfenning, M. Rebello Sousa Dias, F. Langer, S. Höfling, M. Kamp, L. Worschech, L. K. Castelano, G. E. Marques, and V. Lopez-Richard
J. Appl. Phys. 122, 154502 (2017), DOI: 10.1063/1.4994099
Room temperature operation of GaSb-based resonant tunneling diodes by prewell injection
A. Pfenning, G. Knebl, F. Hartmann, R. Weih, A. Bader, M. Emmerling, M. Kamp, S. Höfling, and L. Worschech
Appl. Phys. Lett. 110, 33507 (2017), DOI: 10.1063/1.4973894
GaSb/AlAsSb resonant tunneling diodes with GaAsSb emitter prewells
A. Pfenning, G. Knebl, F. Hartmann, R. Weih, M. Meyer, A. Bader, M. Emmerling, L. Worschech, and S. Höfling
Appl. Phys. Lett. 111, 171104 (2017), DOI: 10.1063/1.4997497
Innovative mid-infrared detector concepts
S. Höfling, A. Pfenning, R. Weih, A. Ratajczak, F. Hartmann, G. Knebl, M. Kamp, and L. Worschech
Proc. SPIE, Infrared Remote Sensing and Instrumentation XXIV, 997306 (2016), DOI: 10.1117/12.2237270
Photoresponse of resonant tunneling diode photodetectors as a function of bias voltage
A. Pfenning, F. Hartmann, F. Langer, M. Kamp, S. Höfling, and L. Worschech
Proc. SPIE, Infrared Remote Sensing and Instrumentation XXIV, 997307 (2016), DOI: 10.1117/12.2238189
Sensitivity of resonant tunneling diode photodetectors
A. Pfenning, F. Hartmann, F. Langer, M. Kamp, S. Höfling, and L. Worschech
Nanotechnology 27, 355202 (2016), DOI: 10.1088/0957-4484/27/35/355202
Cavity-enhanced AlGaAs/GaAs resonant tunneling photodetectors for telecommunication wavelength light detection at 1.3 μm
A. Pfenning, F. Hartmann, F. Langer, M. Kamp, S. Höfling, and L. Worschech
Proc. SPIE, Infrared Remote Sensing and Instrumentation XXIII, 960810 (2015), DOI: 10.1117/12.2188614
Nanothermometer Based on Resonant Tunneling Diodes: From Cryogenic to Room Temperatures
A. Pfenning, F. Hartmann, M. Rebello Sousa Dias, L. K. Castelano, C. Süßmeier, F. Langer, S. Höfling, M. Kamp, G. E. Marques, L. Worschech, and V. Lopez-Richard
ACS Nano 9, 6271 (2015), DOI: 10.1021/acsnano.5b01831
Photocurrent-voltage relation of resonant tunneling diode photodetectors
A. Pfenning, F. Hartmann, M. Rebello Sousa Dias, F. Langer, M. Kamp, L. K. Castelano, V. Lopez-Richard, G. E. Marques, S. Höfling, and L. Worschech
Appl. Phys. Lett. 107, 81104 (2015), DOI: 10.1063/1.4929424
Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths
A. Pfenning, F. Hartmann, F. Langer, S. Höfling, M. Kamp, and L. Worschech
Appl. Phys. Lett. 104, 101109 (2014), DOI: 10.1063/1.4868429